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A NEW FIFTH-ORDER WEIGHTED RUNGE-KUTTA

ALGORITHM BASED ON HERONIAN MEAN FOR INITIAL

VALUE PROBLEMS IN ORDINARY DIFFERENTIAL

EQUATIONS

M. CHANDRU*, R. PONALAGUSAMY, P.J.A. ALPHONSE

Abstract. A new fifth-order weighted Runge-Kutta algorithm based on

heronian mean for solving initial value problem in ordinary differential

equations is considered in this paper. Comparisons in terms of numerical
accuracy and size of the stability region between new proposed Runge-

Kutta(5,5) algorithm, Runge-Kutta (5,5) based on Harmonic Mean, Runge-

Kutta(5,5) based on Contra Harmonic Mean and Runge-Kutta(5,5) based
on Geometric Mean are carried out as well. The problems, methods and

comparison criteria are specified very carefully. Numerical experiments

show that the new algorithm performs better than other three methods in
solving variety of initial value problems. The error analysis is discussed

and stability polynomials and regions have also been presented.
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1. Introduction

It is well known that most of the Initial Value Problems(IVPs) are solved
by Runge-Kutta methods which in turn being applied to compute numerical
solutions for variety of problems that are modeled as the differential equations
and their systems(Alexander and Coyle[9], Evans[10] , Hung[15] and Shampine
and Gorden[3]). Runge-Kutta algorithms are used to solve differential equations
efficiently that are equivalent to approximate the exact solutions by matching
’n’ terms of the Taylor series expansion. Shampine and Watts [4, 6, 5] have

Received March 19, 2016. Revised August 24, 2016. Accepted September 26, 2016.
∗Corresponding author.

c© 2017 Korean SIGCAM and KSCAM .

191



192 M. Chandru, R. Ponalagusamy, P. J. A. Alphonse.

developed mathematical codes for the Runge-Kutta fourth order method. Sev-
eral types of four-stage fourth-order Runge-Kutta methods based on varieties of
means are developed to solve industrially applicable problems including digital
image processing simulation [16, 18, 24].

Evans and Yaacob[19] have developed new fourth-order accurate composite
Runge-Kutta type method using the Heronian Mean and compared with sev-
eral Runge-Kutta methods of fourth-order based on variety of means. They
have found that four stage fourth-order Runge-Kutta method based on har-
monic mean has less computational error in numerical solutions of the considered
test problems as compared to other four stage fourth-order Runge-Kutta meth-
ods based on Centroidal Mean(CeM), Root Means Square(RMS), Arithmetic
Mean(AM), Contra Harmonic Mean(CoM) and Geometric Mean(GM) respec-
tively.

Butcher [1] has developed Runge-Kutta formula of fifth-order. The devel-
opment of fifth-order Runge-Kutta have been done by Evans and Yaakub[12]
and it is shown that their method is better than RK4, RH4(5)-Merson and
RK5(6)-Nystrom methods. Sanugi and Yaacob have developed a new 5-stage
explicit fifth-order nonlinear Runge-Kutta method based on GM. The fifth-order
Runge-Kutta(5, 5) method with error control has been introduced by Evans and
Yaakub [17]. They computed numerical results and compared with other well
known methods RKF (4, 5) and RK (4, 5) Merson. Razali et al. [22] have applied
the fifth order Runge-Kutta method to investigate the problem of Lorenz sys-
tem. A systematic scheme for solving a system of time varying singular ordinary
differential equation(ODE) has been discussed by Ponalagusamy [21]. Various
physical day to day problems in the field of Robot arm, motions of the planet
in a gravity field like kepler problem, electric circuits, chemical Reaction are
in the form of system of equations. The dynamics of Robot Arm problem was
first proposed by Taha [8]. The robot arm problem was successfully investigated
by using the Runge-Kutta methods (Ponalagusamy and Senthilkumar[23]and
Senthilkumar et. al. [26]).

Evans and Yaakub [12] computed approximate solutions of several types of
differential equations using fifth order Runge-Kutta method based on CoM. Re-
cent developments of fifth-order Runge-Kutta methods based on HM, GM, CoM
are performed by ([12], [13], [20]). These existing methods are compared with
fifth-order Runge-Kutta method based on heronian mean in view of numerical
errors and stability [25]. It is pertinent to mention that no effort, so far, has been
made to develop a five stage fifth-order weighted Runge-Kutta method based on
HeM. Keeping this in view, a modest effort has been made in the present paper
to develop such a new efficient numerical algorithm which is, for the first time
added to the literature. It is observed that the presently developed algorithm
has also been found to be more suitable one to solve the system of ODEs.
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As we are doing mathematical modeling for investigating problems in daily
life, we oftenly use the initial value problems(IVPs) such that

y′ = f(x, y(x)) (1.1)

where x is the independent variable which may indicate the time in a physical
problem and the dependent variable y(x) is the solution. Moreover, since y(x)
could be a N-dimensional vector valued function, the domain and range of the
differential equation f and the solution y are given by

f : R× R −→ R (1.2)

y : R −→ RN (1.3)

The above equation (1.1) where f is a function of both x and y which is called
”non-autonomous”. However, by simply introducing an extra variable which
is always exactly equal to x, it can easily be rewritten in an equivalent ”au-
tonomous” form below, where f is a function of y only:

y′(x) = f(y(x)) (1.4)

Even though several problems are naturally expressed in the non-autonomous
form, the autonomous form of differential equation (1.4) is preferred for most
of the theoretical investigations. Further, the autonomous form has some ad-
vantages in numerical analysis since it gives a greater possibility that numerical
methods can solve the differential equation exactly. It is of interest to note that
the differential equation by itself is not enough to find a unique solution. Hence,
some other additional information is needed. However, if all components of y
are given at a certain value of x, that is, ”initial conditions”, then the differential
equation is called an ”initial value problem (IVP)” which is closely and naturally
involved with physical modeling. An initial value problem with the given initial
condition y(x0) = y0 is of the form

y′(x) = f(x, y(x)), y(x0) = y0 (1.5)

in non-autonomous form and

y′(x) = f(y(x)), y(x0) = y0 (1.6)

in autonomous form.
Before we seek for a numerical solution to an initial value problem it is impor-

tant to consider whether the solution is unique, or even a solution exists at all.
There are several mathematical criteria for determining these two considerations,
but the most commonly used approach is the Lipschitz condition.

Definition 1.1. The function f : [a, b]×RN → RN is said to satisfy a Lipschitz
condition in its second variable if there exists a constant L, known as a Lipschitz
constant, such that for any x ∈ [a, b] and y, Z ∈ RN , ‖ f(x, Y )− f(x, Z) ‖≤ L ‖
Y − Z ‖ .

This definition is used in the following theorem.
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Theorem 1.2. Consider an initial value problem (1.5) or (1.6) where f : [a, b]×
RN → RN is continuous in its first variable and satisfies a Lipschitz condition
in its second variable. There there exists a unique solution to this problem.

Proof The proof of theorem can be found in [7]. �
The plan of the paper is as follows. In section 2, the formulation and deriva-

tion of the fifth-order weighted Runge-Kutta method based on heronian mean
is presented. In section 3 the stability polynomial and stability region of all the
considered methods are presented and compared. The first order and system of
first order ordinary differential equations are tested on variety of initial value
problems in section 4. The paper ends with conclusions.

2. Formulation and derivation of the Fifth-Order Weighted
Runge-Kutta Heronian Mean Scheme

The general p-stage Runge-Kutta method for solving an IVP y′ = f(x, y(x))
with the initial condition y(x0) = y0 is defined by

yn+1 = yn +

p∑
i=1

biki (2.1)

Where, ki = f

xn + cih, yn + h

p∑
j=1

aijkj

 and (2.2)

ci =

p∑
j=1

aij ; i = 1, 2, ..., p (2.3)

with b and c are p-dimensional vectors and A(aij) be the p × p matrix. Then
the Butcher array is of the form as mentioned in figure 1.

Figure 1. Butcher Array Table
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To construct our new formula fifth-order weighted RKHeM, we recall that
which is combination of AM and GM. Consider the arbitrary numbers a,b and c
are in Arithmetic progression and d,e and f are in Geometric progression, such
that C is called AM and f is called the GM. That is,

c =
a+ b

2
and

f

d
=
e

f
⇒ f2 = ed⇒ f =

√
ed, (2.4)

Considering,

α =
kj−1 + kj

2
and β =

√
kj−1kj for j = 2, 3, 4, (2.5)

rearranging ki for i=1,2,3,4,5 and using (2.4) in equation (2.1)-(2.3), we obtain

k1 = f (xn, yn)

k2 = f (xn + c1h, yn + ha11k1)

k3 = f (xn + c2h, yn + h(a21k1 + a22k2))

k4 = f (xn + c3h, yn + h(a31k1 + a32k2 + a33k3))

k5 = f (xn + c4h, yn + h(a41k1 + a42k2 + a43k3 + a44k4)) (2.6)

and

yn+1 = yn + h(b1k1 + b2k2 + b3k3 + b4k4 + b5k5 + b6
√
|k1k2|

+b7
√
|k2k3|+ b8

√
|k3k4|+ b9

√
|k4k5|) (2.7)

and the parameters b1, b2, ..., b9, a11, a21, ..., a44 are to be determined. It is to be
noticed that for simplicity, the algebra function f is considered as a function of
y only, without loss of generality. Taylor series expansion of an exact solution
y(xn + h) up to sixth order is given by

y(xn + h) = yn + hf +
h2

2
ffy +

h3

6
(ff2y + f2fyy) +

h4

24
(f3fyyy

+ 4f2fyfyy + ff3y ) +
h5

120
(ff4y + 11f2f2y fyy + 4f3f2y fyy

+ 7f3fyfyyy + f4fyyyy) +
h6

720
(f5fyyyyy + 11f4fyfyyyy

+ 15f4fyyfyyy + 32f3f2y fyyy + 34f3fyf
2
yy + 26f2f3y fyy

+ ff5y ) +O
(
h7
)

(2.8)

Expanding k1, k2, k3, k4 and k5 in Taylor series about xn, substituting in equation
(2.7) and comparing the co-efficients of the same in equation (2.8), one can obtain
11 equations with 19 parameters. By taking b1+b2+b3+b4+b5+b6+b7+b8+b9 =

1, b1 = b5 = b6 = b7 = b8 = b9 =
1

14
, b2 =

1

7
and solving 11 non-linear equations

simultaneously, the required values of the parameters have been computed as
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given below:

b3 =
2

7
, b4 =

1

7
, a11 =

38789865

163066739
, a21 = − 38926273

154969080
,

a22 =
49239911

69362921
, a31 = − 46861542

132568883
, a32 =

415527214

419413821
,

a33 =
38385758

106762407
, a41 =

311954026

192782691
, a42 = −40359572

29023473
,

a43 = − 25308289

156858746
, a44 =

45864583

76174812
. (2.9)

By substituting the values of above parameters in equation (2.6)-(2.7), we get a
new fifth-order weighted Runge-Kutta based on HeM as follows:

yn+1 = yn +
h

14
(k1 + 2(k2 + k3) + 2(k3 + k4) + k5 +

√
|k1k2|

+
√
|k2k3|+

√
|k3k4|+

√
|k4k5|) (2.10)

Where

k1 = f(xn, yn)

k2 = f(xn +
38789865

163066739
h, yn +

38789865

163066739
hk1)

k3 = f(xn +
41063576

89521497
h, yn + h(− 38926273

154969080
k1

+
49239911

69362921
k2))

k4 = f(xn +
142104621

142562423
h, yn + h(− 46861542

132568883
k1

+
415527214

419413821
k2 +

38385758

106762407
k3))

k5 = f(xn +
73755049

110356862
h, yn + h(

311954026

192782691
k1

− 40359572

29023473
k2 −

25308289

156858746
k3 +

45864583

76174812
k4)) (2.11)

The Local Truncation Error for the Heronian Mean method is given by

LTEHeM = h6[−0.0012557831ff5y − 0.0072638436f2f3y fyy

−0.0039318538f3fyf
2
yy + 0.0010892514f3f2y fyyy − 0.0002046344

f4fyyfyyy + 0.0021303658f4fyfyyyy + 0.0004306801f5fyyyyy] + ...

(2.12)

For a detailed scheme of mathematical derivations to derive the formulas since
by equations (2.13)-(2.15), one may refer [23].

From that, the error control and step size selection can be shown as below:

0.004512P 5Qh6 < TOL (2.13)
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h <

[
TOL

0.004512P 5Q

]1

6
(2.14)

The Global Truncation Error(GTE) is given below:

|ε| ≤
(

h5

414720LD

)
M
(
eDL(xn−x0) − 1

)
(2.15)

we can conclude that if the LTE of a numerical method is O(hp+1) then the
GTE is O(h6). The estimate of the GTE can not be used for practical error
estimation or error control because the value from the GTE is less accurate than
the LTE.

3. Stability Regions

In this section we discuss the stability regions for the new fifth-order weighted
Runge-Kutta method based on heronian mean with the existing fifth order
Runge-Kutta formulas based on Contra Harmonic Mean, Geometric Mean and
Harmonic Mean. To evaluate stability polynomial, we use simple test equa-
tion y′ = λy, where λ is a complex constant. The stability polynomials for the
methods considered in the present investigation are as follows:

The stability polynomial for fifth-order Runge-Kutta based on HeM:

Q = 1 + z + 0.5z2 + 0.162594z3 + 0.034799z4 + 0.004883z5 +O(z)6 (3.1)

The stability polynomial for fifth-order Runge-Kutta based on HM:

Q = 1+z+0.499999z2+0.166667z3+0.04166667z4+0.00833333z5+O(z)6 (3.2)

The stability polynomial for fifth-order Runge-Kutta based on CoM:

Q = 1 + z + 0.5z2 + 0.166667z3 + 0.04166667z4 + 0.00833333z5 +O(z)6 (3.3)

The stability polynomial for fifth-order Runge-Kutta based on GM:

Q = 1.00000064z − 0.02245424z2 − 0.13963200z3 − 0.03860570z4

−0.00790011z5 +O(z)6 (3.4)

The condition |yn+1

yn
| = Q < 1 must be satisfied in order to determine the

stability region of the fifth-order Runge-Kutta formula in the complex plane.
With the help of stability polynomials, the stability regions for the fifth-order
Runge-Kutta formula based on Harmonic Mean (shown as star format), the fifth-
order Runge-Kutta method based on Contra harmonic Mean (shown as square
format), the fifth-order Runge-Kutta method based on Geometric Mean (shown
as small circle format) and the proposed fifth-order Runge-Kutta method based
on Heronian Mean (shown as big circle format) are depicted in Figure 2. It is
observed that the present fifth-order weighted Runge-Kutta method based on
heronian mean has a wider stability region in comparison with other three fifth-
order methods. It is concluded from Table 1 that our new fifth order method
(HeM) has got the better stability region in the negative real axis and both in
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the positive and negative imaginary axis as compared to the existing fifth order
methods(HM, CoM and GM).
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Figure 2. Comparison of Stability regions for the fifth-order
Runge-Kutta based on HeM, HM, GM and CoM.

Table 1. Range of the Stability Regions

5th-Order
Real-Axis Imaginary-Axis

Negative Positive Negative Positive

HM -3.200 0.5 -3.39575000 3.39575000

CoM -3.127 0.5 -3.39575159 3.39575159

HeM -3.72 0.1 -3.55298172 3.55298172

GM
-1.12174 2.27479 -0.902166 0.902166

-2.73261 -3.62235 -0.4 0.4

4. Numerical Results

In this section, five first order and one system of first order IVPs are considered
to illustrate efficiency and suitability of the computational methods discussed in
this paper. The problems can be evaluated with the step size h=0.01. The
results are presented in the tables (Table 2 - Table7).
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Example 4.1. Consider a single equation Oscillatory problem of the form [2]:

y′ = y cos(x), y(0) = 1

with exact solution y = esin(x).

Example 4.2. Consider a Single of a logistic curve of the form [2]:

y′ =
y

4

(
1− y

20

)
, y(0) = 1

with exact solution y =
20

1 + 19e−x/4
.

Example 4.3. Consider the first order initial value problem of the form:

y′ = y, y(0) = 1

with exact solution y = exp(x).

Example 4.4. Consider the first order initial value problem of the form:

y′ = −y + x+ 1, y(0) = 1

with exact solution y = x+ exp(−x).

Example 4.5. Consider the first order initial value problem of the form:

y′ = 1/y, y(0) = 1

with exact solution y =
√

2x+ 1.

Example 4.6. The reduced robot arm model to the system of linear equation of
the form:[23]

x′1 = x2,

x′2 = 0.2140x2 − 0.1730x1 + 0.0265,

x′3 = x4,

x′4 = −0.130321x4 − 0.00191844x3 + 0.00935089, with,

x1(0) = −1, x2(0) = 0, x3(0) = −1 and x4(0) = 0. and

the corresponding exact solutions are given by

x1(t) = e0.107t[−1.15317919cos(0.401934074t) + 0.306991074

sin(0.401934074t)] + 0.15317919

x2(t) = e0.107t[0.463502009sin(0.401934074t) + 0.123390173

cos(0.401934074t)] + e0.107t[−1.15317919cos(0.401934074t)

+0.306991074sin(0.401934074t)]

x3(t) = 1.029908976e−0.113404416t − 6.904124484e−0.016916839t

+4.874215508

x4(t) = −0.116795962e−0.113404416t + 0.116795962e−0.016916839t
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The considered robot arm problem can be solved by new fifth-order Runge-Kutta
method based on heronian mean. The error values for four system of first or-
der equations are presented in the table 7, along with other Runge-Kutta (5,5)
methods.

Table 2. Exact solution and Error for the Example 4.1.

x Exact ErrorHM ErrorCoM ErrorHeM ErrorGM

0.0 1.000000 0.0000000 0.0000000 0.0000000 0.0000000

0.1 1.104987 5.36727E-2 1.04992E-1 1.46958E-6 4.38845E-2

0.2 1.219779 1.15072E-1 2.19788E-1 3.06199E-6 9.46901E-2

0.3 1.343826 1.84172E-1 3.43839E-1 4.72663E-6 1.52537E-1

0.4 1.476122 2.60595E-1 4.76140E-1 6.39238E-6 2.17241E-1

0.5 1.615147 3.43542E-1 6.15168E-1 7.96868E-6 2.88246E-1

0.6 1.758819 4.31747E-1 7.58843E-1 9.34937E-6 3.64567E-1

0.7 1.904497 5.23456E-1 9.04524E-1 1.04197E-5 4.44760E-1

0.8 2.049009 6.16441E-1 1.04903E-0 1.10662E-5 5.26919E-1

0.9 2.188742 7.08060E-1 1.18877E-0 1.11896E-5 6.08720E-1

1.0 2.319777 7.95362E-1 1.31981E-0 1.07185E-5 6.87500E-1

Table 3. Exact solution and Error for the Example 4.2.

x Exact ErrorHM ErrorCoM ErrorHeM ErrorGM

0.0 1.000000 0.0000000 0.0000000 0.0000000 0.0000000

0.1 1.024019 1.20702E-2 2.40190E-2 7.12980E-8 1.06322E-2

0.2 1.048583 2.45504E-2 4.85831E-2 1.45632E-7 2.16404E-2

0.3 1.073703 3.74501E-2 7.37031E-2 2.23080E-7 3.30334E-2

0.4 1.099390 5.07788E-2 9.93899E-2 3.03721E-7 4.48205E-2

0.5 1.125655 6.45465E-2 1.25655E-1 3.87635E-7 5.70108E-2

0.6 1.152509 7.87629E-2 1.52509E-1 4.74900E-7 6.96136E-2

0.7 1.179963 9.34379E-2 1.79966E-1 5.65598E-7 8.26384E-2

0.8 1.208030 1.08582E-1 2.08030E-1 6.59808E-7 9.60948E-2

0.9 1.236720 1.24205E-1 2.36721E-1 7.57612E-7 1.09992E-2

1.0 1.266046 1.40317E-2 2.66047E-1 8.59090E-7 1.24341E-2

5. Conclusion

In the present paper, we have developed a new fifth-order weighted Runge-
Kutta technique based on heronian mean and obtained the stability polynomial
and stability region. Several practically applicable problems have been consid-
ered to test the suitability, adoptability and accuracy of the proposed method.
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Table 4. Exact solution and Error for the Example 4.3.

x Exact ErrorHM ErrorCoM ErrorHeM ErrorGM

0.0 1.00000000 0.0000000 0.0000000 0.0000000 0.0000000

0.1 1.105171 5.37684E-2 1.05176E-1 1.46839E-6 4.38940E-2

0.2 1.221403 1.15956E-1 2.21413E-1 3.24565E-6 9.50941E-2

0.3 1.349859 1.87589E-1 3.49873E-1 5.38049E-6 1.54533E-1

0.4 1.491825 2.69811E-1 4.91844E-1 7.92849E-6 2.23254E-1

0.5 1.64872 3.63893E-1 6.48746E-1 1.09529E-5 3.02416E-1

0.6 1.822119 4.71247E-1 8.22148E-1 1.45258E-5 3.93316E-1

0.7 2.013753 5.93443E-1 1.01379E-0 1.87291E-5 4.97397E-1

0.8 2.225541 7.32224E-4 1.22558E-0 2.36558E-5 6.16268E-1

0.9 2.459603 8.89526E-1 1.45965E-0 2.94116E-5 7.51719E-1

1.0 2.718282 1.06749E-0 1.71833E-0 3.61165E-5 9.05744E-1

Table 5. Exact solution and Error for the Example 4.4.

x Exact ErrorHM ErrorCoM ErrorHeM ErrorGM

0.0 1.000000 0.0000000 0.0000000 0.0000000 0.0000000

0.1 1.004837 1.94594E-3 3.93119E-3 3.23979E-6 1.22023E-3

0.2 1.018731 8.23366E-3 1.69592E-2 4.26872E-6 6.80205E-3

0.3 1.040818 1.82597E-2 3.82637E-2 4.96717E-6 1.61309E-2

0.4 1.070320 3.14578E-2 6.70572E-2 5.45673E-6 2.86441E-2

0.5 1.106531 4.73255E-2 1.02627E-1 5.79005E-6 4.38418E-2

0.6 1.148812 6.54178E-2 1.44329E-1 6.00032E-6 6.12809E-2

0.7 1.196585 8.53413E-2 1.91579E-1 6.11189E-6 8.05693E-2

0.8 1.249329 1.06749E-1 2.43849E-1 6.14380E-6 1.01361E-1

0.9 1.306570 1.29335E-1 3.00663E-1 6.11150E-6 1.23351E-1

1.0 1.367879 1.52831E-1 3.61588E-1 6.02777E-6 1.46272E-1

It is noticed from the numerical results that the new fifth-order Runge-Kutta
method based on heronian mean is more efficient than the well known fifth-order
Runge-Kutta method based Harmonic mean(HM), fifth order weighted Runge-
Kutta method based on contra harmonic mean(CoM) and fifth-order Runge-
Kutta method based Geometric mean(GM). In particularly, the robot arm real
time problem is evaluated by the present method which gives more efficient nu-
merical results as compared to other existing fifth-order Runge-Kutta methods.
A remarkable result is that the new fifth-order weighted Runge-Kutta method
based on heronian mean guarantees the most efficient numerical technique for
investigating first order initial value problems and the system of first order initial
value problem in ODEs.
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Table 6. Exact solution and Error for the Example 4.5.

x Exact ErrorHM ErrorCoM ErrorHeM ErrorGM

0.0 1.000000 0.0000000 0.0000000 0.0000000 0.0000000

0.1 1.095445 4.67493E-2 9.54499E-2 1.15882E-6 4.56243E-2

0.2 1.183216 8.79780E-2 1.83226E-1 1.97034E-6 8.55639E-2

0.3 1.264911 1.25022E-1 2.64926E-1 2.56461E-6 1.21204E-1

0.4 1.341641 1.58779E-1 3.41660E-1 3.01436E-6 1.53475E-1

0.5 1.414214 1.89881E-1 4.14238E-1 3.36341E-6 1.83036E-1

0.6 1.483240 2.18791E-1 4.83269E-1 3.63968E-6 2.10367E-1

0.7 1.549193 2.45859E-1 5.49227E-1 3.86180E-6 2.35832E-1

0.8 1.612452 2.71357E-1 6.12491E-1 4.04267E-6 2.59711E-1

0.9 1.673320 2.95496E-1 6.73364E-1 4.19146E-6 2.82226E-1

1.0 1.732051 3.18448E-1 7.32091E-1 4.31490E-6 3.03554E-1

Table 7. Error in R-K(5,5) based on HeM for the Example
4.6(Robot Arm Problem[23]).

t x1(t) x2(t) x3(t) x4(t)

0.0 0.0000000 0.0000000 0.0000000 0.0000000

0.1 7.47021E-7 4.59391E-8 1.54702E-8 1.02271E-9

0.2 1.08259E-6 8.23844E-8 7.36929E-9 2.02120E-9

0.3 1.40138E-6 1.10219E-7 1.92867E-9 2.99695E-9

0.4 1.71670E-6 1.29260E-7 1.16024E-8 3.95053E-9

0.5 12.0319E-6 1.39193E-7 2.13947E-8 4.88238E-9

0.6 2.34769E-6 1.39663E-7 3.11926E-8 5.79294E-9

0.7 2.66379E-6 1.30312E-7 4.09371E-8 6.68260E-9

0.8 2.97943E-6 1.10785E-7 5.05942E-8 7.55174E-9

0.9 3.29354E-6 8.07423E-8 6.01429E-8 8.40073E-9

1.0 3.60489E-6 3.98600E-8 6.95702E-8 9.22992E-9

Acknowledgement

The authors are extremely thankful to the Editor in Chief Prof. Hong-Tae
Shim and unknown referees for accepting the paper.

References

1. J. C. Butcher, On Runge Processes of Higher Order, Journal of the Australian Mathematical
Society, 4 (1964), No. 2, 179-189.

2. T.E. Hull, W.H. Enright, B.M. Fellen and A.E. Sedgwick, Comparing Numerical Methods

for Ordinary Differential Equations, SIAM, Journal of Numerical Analysis, Vol. 9 (1972),
No. 4, 603-637.



A New Fifth-Order Weighted Runge-Kutta Algorithm based on Heronian Mean 203

3. L.F. Shampine and M.K. Gordon, Computer Solutions of Ordinary Differential Equations:

the initial value problem, W.H. Freeman, San Francisco, CA, 85, 1975.
4. L.F. Shampine and H.A. Watts, The art of a Runge-Kutta code. Part I, Mathematical

Software, 3 (1977), 257-275.

5. L.F. Shampine and H.A. Watts, The Art of writing a Runge-Kutta Code. Part II, Applied
Mathematical Computations, 5 (1979), 93-121.

6. L.F. Shampine and H.A. Watts, Some Practical Runge-Kutta Formulas, Mathematics of

Computations, 46 (1985), 135-150.
7. J.C. Butcher, The numerical analysis of ordinary differential equations: RungeKutta and

general linear methods, John Wiley & Sons, Chichester, New York, 1987.

8. Z. Taha, Approach to variable structure control of Industrial Robots in Robot Control-
Theory and Applications, Peter Peregrinus Ltd, North-Holland, (1988), 53-59.

9. R.K. Alexander and J.J. Coyle, Runge-Kutta methods for differential-algebraic systems,
SIAM Journal of Numerical Analysis, 27 (1990), No. 3, 736-752.

10. D.J. Evans, A new 4th order Runge-Kutta method for initial value problems with error

control, International Journal of Computer Mathematics, 39 (1991), 217-227.
11. D.J. Evans and A.R. Yaakub, A New Fourth-Order Runge-Kutta Formula Based on the

Contraharmonic Mean, International Journal of Computer Mathematics, 57 (1995), 249-

256.
12. D.J. Evans and A.R. Yaakub, A New Fifth-Order Weighted Runge-Kutta Formula, Inter-

national Journal of Computer Mathematics, 59 (1996), 227-243.

13. A.R. Yaakub and D.J. Evans, A New Fifth Order Contraharmonic Mean Method Weighted
Runge-Kutta Formula For Initial Value Problems, Loughborough University of Technology,

Department of Computer Studies, Report No. 993, 1996.

14. N. Yaacob and B. Sanugi, A New Fourth-order Embedded Method Based on the Harmonic
Mean, Mathematika, 14 (1998), 1-6.

15. G. Hung, Dissipitivity of Runge-Kutta methods for dynamical systems with delays, IMA
Journal of Numerical Analysis, 20 (2000), 153-166.

16. R. Ponalagusamy, K. Murugesan, D. Paul Dhayabaran and E.C. Henry Amirtharaj, Nu-

merical Solution of Heat-flow Problem by a Combined method of Rayleigh Ritz with STWS
and RKHM, Advances in Modeling and Analysis Journal(France)-A, 38 (2001), 29-48.

17. D.J. Evans and A.R. Yaakub, A Fifth-Order Runge-Kutta RK(5,5) Method with Error

Control, International Journal of Computer Mathematics, 79 (2002), 1179-1185.
18. R. Ponalagusamy and S. Senthilkumar, Investigation on Multilayer Raster Cellular Neural

Network by Arithmetic and Heronian Mean RKAHeM(4,4), Lecture Notes in Engineering

and Compute Science[ISBN: 978-988-98671-5-7], WCE, IAENG, U.K., (2007), 713-718.
19. D.J. Evans and N. Yaacob, A fourth-order Runge-Kutta method based on the heronian

mean formula, International Journal of Computer Mathematics, 58 (2007), 103-115.

20. B.B. Sanugi, N.B. Yaacob, A new fifth-order five-stage runge kutta method for initial
value type problems in ODEs, International Journal of Computer Mathematics, 59 (2007),

187-207.

21. R. Ponalagusamy, A Novel and Efficient Computational Algorithm of STWS for General-
ized Linear Non-Singular/Singular Time Varying Systems, Journal of Software Engineer-

ing, 2 (2008), 1-9.
22. N. Razali, R.R. Ahmad, M. Darus and A.S. Rambely, Fifth-Order Mean Runge-Kutta

Methods Applied to the Lorenz System, Proc. Of the 13th WSEAS International Conference

on Applied Mathematics, (2008), 333-338.
23. R.Ponalagusamy and S.Senthilkumar, System of second order Robot Arm Problem by an

Efficient Numerical Integration Algorithm, Archives of Computational Materials Science

and Surface Engineering, 1 (2010), 38-44.



204 M. Chandru, R. Ponalagusamy, P. J. A. Alphonse.

24. R. Ponalagusamy and S. Senthilkumar, Investigation on Time-Multiplexing Cellular Neu-

ral Network Simulation by RKAHeM(4,4) Technique, International Journal of Advanced
Intelligence Paradigms, 3 (2011), 43-66.

25. R. Ponalagusamy, P.J.A. Alphonse and M. Chandru, Development of New Fifth-Order

Fifth-Stage Runge Kutta Method based on Heronian Mean, International Journal of Engi-
neering Science, Advanced Computing and Bio-Technology, 2 (2011), 162-197.

26. S. SenthilKumar, Malrey Lee and Tae-Kyu Kwon, Runge-Kutta(5,5) Methods for Robot

Arm & Initial Value Problem, International Journal of Control and Automation, 6 (2013),
329-336.

M. Chandru is pursuing his Ph.D. at National Institute of Technology. His area of interests
are Differential Equations and Numerical Analysis.

Department of Mathematics, National Institute of Technology, Tiruchirappalli, Tamilnadu,

India.
e-mail: leochandru@gmail.com

R. Ponalagusamy is working as a Professor at National Institute of Technology. His area
of interests are Computational Bio-Mathematics, Computer Models on Metal Forming,

Parallel Algorithms, Image Processing and Numerical Experimentaion.

Department of Mathematics, National Institute of Technology, Tiruchirappalli, Tamilnadu,
India.

e-mail: rpalagu@nitt.edu

P.J.A. Alphonse is working as a Associate Professor at National Institute of Technology.

His area of interests are Graph Theory and its Applications, Wireless and Ad hoc Networks
and Cryptography and Network Security.

Department of Computer Applications, National Institute of Technology, Tiruchirappalli,

Tamilnadu, India.
e-mail: alphonse@nitt.edu


