• Title/Summary/Keyword: number plate recognition

Search Result 89, Processing Time 0.033 seconds

Multi License Plate Recognition System using High Resolution 360° Omnidirectional IP Camera (고해상도 360° 전방위 IP 카메라를 이용한 다중 번호판 인식 시스템)

  • Ra, Seung-Tak;Lee, Sun-Gu;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.412-415
    • /
    • 2017
  • In this paper, we propose a multi license plate recognition system using high resolution $360^{\circ}$ omnidirectional IP camera. The proposed system consists of a planar division part of $360^{\circ}$ circular image and a multi license plate recognition part. The planar division part of the $360^{\circ}$ circular image are divided into a planar image with enhanced image quality through processes such as circular image acquisition, circular image segmentation, conversion to plane image, pixel correction using color interpolation, color correction and edge correction in a high resolution $360^{\circ}$ omnidirectional IP Camera. Multi license plate recognition part is through the multi-plate extraction candidate region, a multi-plate candidate area normalized and restore, multiple license plate number, character recognition using a neural network in the process of recognizing a multi-planar imaging plates. In order to evaluate the multi license plate recognition system using the proposed high resolution $360^{\circ}$ omnidirectional IP camera, we experimented with a specialist in the operation of intelligent parking control system, and 97.8% of high plate recognition rate was confirmed.

Study on Vehicle License Plate Recognition System (차량 번호판 인식 시스템 구현에 관한 연구)

  • Kim, Hyun-Yul;Lee, Geon-Wha;Park, Young-Rok;Lee, Seung-Kyu;Park, Young-Cheol;Kang, Yong-Seok;Bae, Cheol-soo;Lee, Jin-Ki
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.2
    • /
    • pp.113-118
    • /
    • 2013
  • This study will suggest methods for a license plate recognition system that is suitable for license plate identification, separation of letters, and recognition of letters in order to recognize a licence plate efficiently. The suggested algorithm had tested a recognition system that onlyused backpropagation, a recognition system that used only SVM, and the suggested recognition system in order to prove efficiency. As a result, recognition rate had increased from the minimum 7.9% to the maximum12.2% as the case of using back propagation recognized the number platefor 87.9%, the case of using SVM for 91.4%, and the suggested had 98.6% of recognition rate.

Recognition System of Car License Plate using Fuzzy Neural Networks (퍼지 신경망을 이용한 자동차 번호판 인식 시스템)

  • Kim, Kwang-Baek;Cho, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.313-319
    • /
    • 2007
  • In this paper, we propose a novel method to extract an area of car licence plate and codes of vehicle number from a photographed car image using features on vertical edges and a new Fuzzy neural network algorithm to recognize extracted codes. Prewitt mask is used in searching for vertical edges for detection of an area of vehicle number plate and feature information of vehicle number palate is used to eliminate image noises and extract the plate area and individual codes of vehicle number. Finally, for recognition of extracted codes, we use the proposed Fuzzy neural network algorithm, in which FCM is used as the learning structure between input and middle layers and Max_Min neural network is used as the learning structure within inhibition and output layers. Through a variety of experiments using real 150 images of vehicle, we showed that the proposed method is more efficient than others.

  • PDF

Improved Method of License Plate Detection and Recognition using Synthetic Number Plate (인조 번호판을 이용한 자동차 번호인식 성능 향상 기법)

  • Chang, Il-Sik;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.453-462
    • /
    • 2021
  • A lot of license plate data is required for car number recognition. License plate data needs to be balanced from past license plates to the latest license plates. However, it is difficult to obtain data from the actual past license plate to the latest ones. In order to solve this problem, a license plate recognition study through deep learning is being conducted by creating a synthetic license plates. Since the synthetic data have differences from real data, and various data augmentation techniques are used to solve these problems. Existing data augmentation simply used methods such as brightness, rotation, affine transformation, blur, and noise. In this paper, we apply a style transformation method that transforms synthetic data into real-world data styles with data augmentation methods. In addition, real license plate data are noisy when it is captured from a distance and under the dark environment. If we simply recognize characters with input data, chances of misrecognition are high. To improve character recognition, in this paper, we applied the DeblurGANv2 method as a quality improvement method for character recognition, increasing the accuracy of license plate recognition. The method of deep learning for license plate detection and license plate number recognition used YOLO-V5. To determine the performance of the synthetic license plate data, we construct a test set by collecting our own secured license plates. License plate detection without style conversion recorded 0.614 mAP. As a result of applying the style transformation, we confirm that the license plate detection performance was improved by recording 0.679mAP. In addition, the successul detection rate without image enhancement was 0.872, and the detection rate was 0.915 after image enhancement, confirming that the performance improved.

Novel License Plate Detection Method Based on Heuristic Energy

  • Sarker, Md.Mostafa Kamal;Yoon, Sook;Lee, Jaehwan;Park, Dong Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1114-1125
    • /
    • 2013
  • License Plate Detection (LPD) is a key component in automatic license plate recognition system. Despite the success of License Plate Recognition (LPR) methods in the past decades, the problem is quite a challenge due to the diversity of plate formats and multiform outdoor illumination conditions during image acquisition. This paper aims at automatical detection of car license plates via image processing techniques. In this paper, we proposed a real-time and robust method for license plate detection using Heuristic Energy Map(HEM). In the vehicle image, the region of license plate contains many components or edges. We obtain the edge energy values of an image by using the box filter and search for the license plate region with high energy values. Using this energy value information or Heuristic Energy Map(HEM), we can easily detect the license plate region from vehicle image with a very high possibilities. The proposed method consists two main steps: Region of Interest (ROI) Detection and License Plate Detection. This method has better performance in speed and accuracy than the most of existing methods used for license plate detection. The proposed method can detect a license plate within 130 milliseconds and its detection rate is 99.2% on a 3.10-GHz Intel Core i3-2100(with 4.00 GB of RAM) personal computer.

Recognition of Car License Plates Using Difference Operator and ART2 Algorithm (차 연산과 ART2 알고리즘을 이용한 차량 번호판 통합 인식)

  • Kim, Kwang-Baek;Kim, Seong-Hoon;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2277-2282
    • /
    • 2009
  • In this paper, we proposed a new recognition method can be used in application systems using morphological features, difference operators and ART2 algorithm. At first, edges are extracted from an acquired car image by a camera using difference operators and the image of extracted edges is binarized by a block binarization method. In order to extract license plate area, noise areas are eliminated by applying morphological features of new and existing types of license plate to the 8-directional edge tracking algorithm in the binarized image. After the extraction of license plate area, mean binarization and mini-max binarization methods are applied to the extracted license plate area in order to eliminated noises by morphological features of individual elements in the license plate area, and then each character is extracted and combined by Labeling algorithm. The extracted and combined characters(letter and number symbols) are recognized after the learning by ART2 algorithm. In order to evaluate the extraction and recognition performances of the proposed method, 200 vehicle license plate images (100 for green type and 100 for white type) are used for experiment, and the experimental results show the proposed method is effective.

Vehicle Recognition with Recognition of Vehicle Identification Mark and License Plate (차량 식별마크와 번호판 인식을 통한 차량인식)

  • Lee Eung-Joo;Kim Sung-Jin;Kwon Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1449-1461
    • /
    • 2005
  • In this paper, we propose a vehicle recognition system based on the classification of vehicle identification mark and recognition of vehicle license plate. In the proposed algorithm, From the input vehicle image, we first simulate preprocessing procedures such as noise reduction, thinning etc., and detect vehicle identification mark and license plate region using the frequency distribution of intensity variation. And then, we classify extracted vehicle candidate region into identification mark, character and number of vehicle by using structural feature informations of vehicle. Lastly, we recognize vehicle informations with recognition of identification mark, character and number of vehicle using hybrid and vertical/horizontal pattern vector method. In the proposed algorithm, we used three properties of vehicle informations such as Independency property, discriminance property and frequency distribution of intensity variation property. In the vehicle images, identification mark is generally independent of the types of vehicle and vehicle identification mark. And also, the license plate region between character and background as well as horizontal/vertical intensity variations are more noticeable than other regions. To show the efficiency of the propofed algorithm, we tested it on 350 vehicle images and found that the propofed method shows good Performance regardless of irregular environment conditions as well as noise, size, and location of vehicles.

  • PDF

Mobile Robot Navigation in Indoor Environments using Object Recognition

  • Lee, Won-Hee;Park, Min-Gyu;Lee, Min-Cheul;Kim, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.126.1-126
    • /
    • 2001
  • Navigation in unknown environments, where the robot has no exact geometric information in advance, requires the robot to obtain the destination positions without a map. The utilization of model-based object recognition would be a solution, where the robot can estimate the destination positions from geometric relationships between the recognized objects and the robot. This paper presents a robot System for this kind of navigation, in Which the robot navigates itself to the room designated by room number. Object recognition technique is used to find a door and character recognition is utilized to interpret the room number on the number plate near the door and to determine whether it is the destination or not. The robot has ...

  • PDF

An Effective Method of Product Number Detection from Thick Plates (효과적인 후판의 제품번호 검출 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.1
    • /
    • pp.139-148
    • /
    • 2015
  • In this paper, a new algorithm is proposed for detecting the product number of each thick plate and extracting each character of the product number from a image which contains several thick plates. In general, a image of thick plates contains several steal plates. To obtain the product number from the image, we first need to separate each plate. To do so, we use the line edges of thick plates and a clustering algorithm. After separating each plate, background parts are eliminated from the image of each plate. Background parts of an individual thick plate image consist of the dark part of steel and the white part of paint which is used for printing the product number. We propose a two-tiered method where dark background parts are first eliminated and then white parts are eliminated. Finally, each character is extracted from the product number image using the characteristics of product number. The results of the experiments on the various steal plates images emphasize that the proposed algorithm detects each thick plate and extracts the product number from a image effectively.

Character Recognition of Vehicle Number Plate using Modular Neural Network (모듈라 신경망을 이용한 자동차 번호판 문자인식)

  • Park, Chang-Seok;Kim, Byeong-Man;Seo, Byung-Hoon;Lee, Kwang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.409-415
    • /
    • 2003
  • Recently, the modular learning are very popular and receive much attention for pattern classification. The modular learning method based on the "divide and conquer" strategy can not only solve the complex problems, but also reach a better result than a single classifier′s on the learning quality and speed. In the neural network area, some researches that take the modular learning approach also have been made to improve classification performance. In this paper, we propose a simple modular neural network for characters recognition of vehicle number plate and evaluate its performance on the clustering methods of feature vectors used in constructing subnetworks. We implement two clustering method, one is grouping similar feature vectors by K-means clustering algorithm, the other grouping unsimilar feature vectors by our proposed algorithm. The experiment result shows that our algorithm achieves much better performance.