• 제목/요약/키워드: nuclear proliferation

검색결과 492건 처리시간 0.022초

Influence of 17β-Estradiol on 15-Deoxy-Δ12,14 Prostaglandin J2 -Induced Apoptosis in MCF-7 and MDA-MB-231 Cells

  • Yaacob, Nik Soriani;Nasir, Rabail;Norazmi, Mohd Nor
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6761-6767
    • /
    • 2013
  • The nuclear receptor, peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), is expressed in various cancer cells including breast, prostate, colorectal and cervical examples. An endogenous ligand of $PPAR{\gamma}$, 15-deoxy-${\Delta}^{12,14}$ prostaglandin $J_2$ (PGJ2), is emerging as a potent anticancer agent but the exact mechanism has not been fully elucidated, especially in breast cancer. The present study compared the anticancer effects of PGJ2 on estrogen receptor alpha ($ER{\alpha}$)-positive (MCF-7) and $ER{\alpha}$-negative (MDA-MB-231) human breast cancer cells. Based on the reported signalling cross-talk between $ER{\alpha}$ and $ER{\alpha}$, the effect of the $ER{\alpha}$ ligand, $17{\beta}$-estradiol (E2) on the anticancer activities of PGJ2 in both types of cells was also explored. Here we report that PGJ2 inhibited proliferation of both MCF-7 and MDA-MB-231 cells by inducing apoptotic cell death with active involvement of mitochondria. The presence of E2 potentiated PGJ2-induced apoptosis in MCF-7, but not in MDA-MB-231 cells. The $ER{\alpha}$ antagonist, GW9662, failed to block PGJ2-induced activities but potentiated its effects in MCF-7 cells, instead. Interestingly, GW9662 also proved capable of inducing apoptotic cell death. It can be concluded that E2 enhances $ER{\alpha}$-independent anticancer effects of PGJ2 in the presence of its receptor.

Anti-inflammatory Effects of Various Mushrooms in LPS-stimulated RAW264.7 Cells

  • Seo, Kyung Hye;Park, Jeong-Yong;Noh, Hyung-Jun;Lee, Ji Yeon;Lee, Eun Young;Han, Jae-Gu;Kim, Jin Hyo;Cheong, Mi Sun
    • 한국자원식물학회지
    • /
    • 제31권5호
    • /
    • pp.478-488
    • /
    • 2018
  • Mushrooms have been widely cultivated and consumed as foods and herbal medicines owing to their various biological properties. However, few studies have evaluated the anti-inflammatory effects of mushrooms. Here, we investigated the effects of mushroom extracts (MEs) on lipopolysaccharide (LPS)-induced inflammation in macrophages (RAW264.7 cells). First, we extracted MEs with either water or ethanol. Using LPS-treated RAW264.7 cells, we measured cell proliferation and NO production. Gene expression of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin (IL)-6 (IL-6), and $IL-1{\beta}$ was assessed by RT-PCR, and protein abundance of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) and phosphorylation of p65 were determined by immunoblotting. MEs prepared using both water and ethanol inhibited LPS-induced inflammation in RAW264.7 cells. Nitric oxide (NO) levels induced by LPS were reduced by treatment with MEs. Isaria japonica Yasuda water extracts and Umbilicaria esculenta (Miyoshi) Minks ethanol extracts significantly decreased the mRNA expression of inflammation-related cytokine genes including $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$. Similarly, the protein abundance of iNOS and COX-2 was also decreased. The phosphorylation of p65, a subunit of nuclear $factor-{\kappa}B$ was at least partly suppressed by MEs. This study suggests that mushrooms could be included in the diet to prevent and treat macrophage-related chronic immune diseases.

구강세치제에 함유된 SLS(Sodium lauryl Sulfate)가 HaCaT 세포와 NIH-3T3 세포에 미치는 독성 효과 (The effect of the cytotoxicity of sodium lauryl sulfate containing toothpaste on HaCaT and NIH-3T3 cells)

  • 박상례;김영민;최별보라;김지영
    • 한국치위생학회지
    • /
    • 제15권4호
    • /
    • pp.719-725
    • /
    • 2015
  • Objectives: The purpose of this study was to determine the toxic effects of sodium lauryl sulfate(SLS) in human keratinocyte HaCaT cells and mouse fibroblast NIH-3T3 cells. Methods: The effect of sodium lauryl sulfate(SLS) cell viability and proliferation were determined by WST-1 assay and changes shape of nucleus were evaluated by Hoechst staining under fluorescence microscopy. Additionally, observation of cell morphological changes under light microscopy. Results: SLS induced cytotoxicity and a marked apoptosis in both HaCaT and NIH-3T3 cell lines. With the result of the WST-1 assay, SLS induced the cytotoxicity of 0.005% and 0.0075%, 0.01% SLS for 24 h after HaCaT and NIH-3T3 cells in time and dose-dependent manner(p<0.005). SLS inhibited cell growth and caused apoptosis as evidenced by nuclear fragmentation and condensation. Thus, determination of the morphological changes to define apoptosis was visualized using inverted phase contrast microscopy. Conclusions: SLS had toxicity of the human keratinocyte cells and mouse fibroblast cells and this study will provide the basic data for the development of proper SLS concentration in dentifrice.

Combination between Taxol-Encapsulated Liposomes and Eruca sativa Seed Extract Suppresses Mammary Tumors in Female Rats Induced by 7,12 Dimethylbenz(α)anthracene

  • Shaban, Nadia;Abdel-Rahman, Salah;Haggag, Amany;Awad, Doaa;Bassiouny, Ahmad;Talaat, Iman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권1호
    • /
    • pp.117-123
    • /
    • 2016
  • Taxol (paclitaxel) is a powerful anti-cancer drug widely used against several types of malignant tumors. Because Taxol may exert several side effects, a variety of formulations have been developed. One of these features liposomes, regarded as one of the most promising drug carriers, biocompatible and best able to reduce drug toxicity without changing efficacy against tumor cells. Eruca sativa seed extract (SE) is considered a promising natural product from cruciferous vegetables against breast cancer, increasing chemotherapeutic and eliminating harmful side effects. The effects of Taxol-encapsulated liposomes (T) alone and in combination between Eruca sativa seed extract on nuclear factor kappa B (NF-${\kappa}B$), cyclooxygenase-2 (COX-2) and B-cell lymphoma-2 (Bcl-2) gene expression levels were investigated in rat mammary gland carcinogenesis induced by 7,12 dimethylbenz(${\alpha}$) anthracene (DMBA) using qRT-PCR. The results showed that DMBA increased NF-${\kappa}B$, COX-2 and Bcl-2 gene expression levels and lipid peroxidation (LP), while decreasing glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities and total antioxidant concentration (TAC) compared to the control group. T and T-SE treatment reduced NF-${\kappa}B$, COX-2 and Bcl-2 gene expression levels and LP. Hence, T and T-SE treatment appeared to reduce inflammation and cell proliferation, while increasing apoptosis, GST and SOD activities and TAC.

Anti-CSC Effects in Human Esophageal Squamous Cell Carcinomas and Eca109/9706 Cells Induced by Nanoliposomal Quercetin Alone or Combined with CD 133 Antiserum

  • Zheng, Nai-Gang;Mo, Sai-Jun;Li, Jin-Ping;Wu, Jing-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권20호
    • /
    • pp.8679-8684
    • /
    • 2014
  • CD133 was recently reported to be a cancer stem cell and prognostic marker. Quercetin is considered as a potential chemopreventive agent due to its involvement in suppression of oxidative stress, proliferation and metastasis. In this study, the expression of CD133/CD44 in esophageal carcinomas and Eca109/9706 cells was explored. In immunoflurorescence the locations of $CD133^+$ and multidrug resistance 1 $(MDR1)^+$ in the same E-cancer cells were coincident, mainly in cytomembranes. In esophageal squamous cell carcinomas detected by double/single immunocytochemistry, small $CD133^+$ cells were located in the basal layer of stratified squamous epithelium, determined as CSLC (cancer stem like cells); $CD44^+$ surrounding the cells appeared in diffuse pattern, and the larger $CD44^+$ (hi) cells were mainly located in the prickle cell layer of the epithelium, as progenitor cells. In E-cancer cells exposed to nanoliposomal quercetin (nLQ with cytomembrane permeability), down-regulation of NF-${\kappa}Bp65$, histone deacetylase 1 (HDAC1) and cyclin D1 and up-regulation of caspase-3 were shown by immunoblotting, and attenuated HDAC1 with nuclear translocation and promoted E-cadherin expression were demonstrated by immunocytochemistry. In particular, enhanced E-cadherin expression reflected the reversed epithelial mesenchymal transition (EMT) capacity of nLQ, acting as cancer attenuator/preventive agent. nLQ acting as an HDAC inhibitor induced apoptotic cells detected by TUNEL assay mediated via HDAC-NF-${\kappa}B$ signaling. Apoptotic effects of liposomal quercetin (LQ, with cytomembrane-philia) combined with CD133 antiserum were also detected by CD133 immunocytochemistry combined with TUNEL assay. The combination could induce greater apoptotic effects than nLQ induced alone, suggesting a novel anti-CSC treatment strategy.

Development of Polymeric Nanopaclitaxel and Comparison with Free Paclitaxel for Effects on Cell Proliferation of MCF-7 and B16F0 Carcinoma Cells

  • Yadav, Deepak;Anwar, Mohammad Faiyaz;Garg, Veena;Kardam, Hemant;Beg, Mohd Nadeem;Suri, Suruchi;Gaur, Sikha;Asif, Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2335-2340
    • /
    • 2014
  • Paclitaxel is hydrophobic in nature and is recognized as a highly toxic anticancer drug, showing adverse effects in normal body sites. In this study, we developed a polymeric nano drug carrier for safe delivery of the paclitaxel to the cancer that releases the drug in a sustained manner and reduces side effects. N-isopropylacrylamide/vinyl pyrrolidone (NIPAAm/VP) nanoparticles were synthesized by radical polymerization. Physicochemical characterization of the polymeric nanoparticles was conducted using dynamic light scattering, transmission electron microscopy, scanning electron microscopy and nuclear magnetic resonance, which confirmedpolymerization of formulated nanoparticles. Drug release was assessed using a spectrophotometer and cell viability assays were carried out on the MCF-7 breast cancer and B16F0 skin cancer cell lines. NIPAAm/VP nanoparticles demonstrated a size distribution in the 65-108 nm range and surface charge measured -15.4 mV. SEM showed the nanoparticles to be spherical in shape with a slow drug release of ~70% in PBS at $38^{\circ}C$ over 96 h. Drug loaded nanoparticles were associated with increased viability of MCF-7 and B16F0 cells in comparison to free paclitaxel. Nano loaded paclitaxel shows high therapeutic efficiency by sustained release action for the longer period of time, i increasing its efficacy and biocompatibility for human cancer therapy. Therefore, paclitaxel loaded (NIPAAm/VP) nanoparticles may provide opportunities to expand delivery of the drug for clinical selection.

Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

  • Li, Dongxia;Ni, Kuikui;Pang, Huili;Wang, Yanping;Cai, Yimin;Jin, Qingsheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권5호
    • /
    • pp.620-631
    • /
    • 2015
  • A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC $43971^T$, Micrococcus luteus ATCC $4698^T$ and Escherichia coli ATCC $11775^T$ were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at $100^{\circ}C$), but the antimicrobial activity was eliminated after treatment at $121^{\circ}C$ for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory.

Fermented Prunus mume with Probiotics Inhibits 7,12-Dimethylbenz[a]anthracene and 12-O-Tetradecanoyl phorbol-13-acetate Induced Skin Carcinogenesis through Alleviation of Oxidative Stress

  • Lee, Jin-A;Ko, Jae-Hyung;Jung, Bock-Gie;Kim, Tae-Hoon;Hong, Ji-In;Park, Young-Seok;Lee, Bong-Joo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.2973-2978
    • /
    • 2013
  • Maesil (Prunus mume Siebold & Zucc.), a member of the genus Rosaceae, has been reported to have antioxidative effects, as well as anticancer influence in many cancer lines. Thus, this present study was designed to investigate the inhibitory effect of fermented Maesil with probiotics against 7,12-dimethylbenz[a]anthracene (DMBA), 12-O-tetradecanoyl phorbol 13-acetate (TPA)-induced mouse skin carcinogenesis via its antioxidative potential. Mice were fed a diet containing fermented Maesil, containing either 1% (1% FM fed group) or 2% (2% FM fed group) along with probiotics following DMBA and TPA exposure. Continuous ingestion of the experimental feed markedly inhibited skin carcinogenesis, as evidenced by a marked decrease in papilloma numbers and epidermal hyperplasia as well as cellular proliferation and the percentage of proliferating-cell nuclear antigen positive cells. Also, the FM fed group showed an increase of total antioxidant capacity as well as an increased level of phase II detoxifying enzymes such as superoxide dismutase, concurrent with a decreased lipid peroxidation activity level. Taken together, these results suggest that fermented Maesil has the ability to suppress the development of DMBA-TPA induced skin carcinogenesis, via the reduction of lipid peroxidation, enhancing total antioxidant capacity and phase II detoxifying enzyme.

Dendritic Cell Activation by Glucan Isolated from Umbilicaria Esculenta

  • Kim, Hyung-Sook;Kim, Jee-Youn;Lee, Hong-Kyung;Kim, Moo-Sung;Lee, Sang-Rin;Kang, Jong-Soon;Kim, Hwan-Mook;Lee, Kyung-Ae;Hong, Jin-Tae;Kim, Young-Soo;Han, Sang-Bae
    • IMMUNE NETWORK
    • /
    • 제10권6호
    • /
    • pp.188-197
    • /
    • 2010
  • Background: Lichen-derived glucans have been known to stimulate the functions of immune cells. However, immunostimulatory activity of glucan obtained from edible lichen, Umbilicaria esculenta, has not been reported. Thus we evaluated the phenotype and functional maturation of dendritic cells (DCs) following treatment of extracted glucan (PUE). Methods: The phenotypic and functional maturation of PUE-treated DCs was assessed by flow cytometric analysis and cytokine production, respectively. PUE-treated DCs was also used for mixed leukocyte reaction to evaluate T cell-priming capacity. Finally we detected the activation of MAPK and NF-${\kappa}B$ by immunoblot. Results: Phenotypic maturation of DCs was shown by the elevated expressions of CD40, CD80, CD86, and MHC class I/II molecules. Functional activation of DCs was proved by increased cytokine production of IL-12, IL-$1{\beta}$, TNF-${\alpha}$, and IFN-${\alpha}/{\beta}$, decreased endocytosis, and enhanced proliferation of allogenic T cells. Polymyxin B, specific inhibitor of lipopolysaccharide (LPS), did not affect PUE activity, which suggested that PUE was free of LPS contamination. As a mechanism of action, PUE increased phosphorylation of ERK, JNK, and p38 MAPKs, and enhanced nuclear translocation of NF-${\kappa}B$ p50/p65 in DCs. Conclusion: These results indicate that PUE induced DC maturation via MAPK and NF-${\kappa}B$ signaling pathways.

Equol Induces Mitochondria-Dependent Apoptosis in Human Gastric Cancer Cells via the Sustained Activation of ERK1/2 Pathway

  • Yang, Zhiping;Zhao, Yan;Yao, Yahong;Li, Jun;Wang, Wangshi;Wu, Xiaonan
    • Molecules and Cells
    • /
    • 제39권10호
    • /
    • pp.742-749
    • /
    • 2016
  • The cancer chemo-preventive effects of equol have been demonstrated for a wide variety of experimental tumours. In a previous study, we found that equol inhibited proliferation and induced apoptotic death of human gastric cancer MGC-803 cells. However, the mechanisms underlying equol-mediated apoptosis have not been well understood. In the present study, the dual AO (acridine orange)/EB (ethidium bromide) fluorescent assay, the comet assay, MTS, western blotting and flow cytometric assays were performed to further investigate the pro-apoptotic effect of equol and its associated mechanisms in MGC-803 cells. The results demonstrated that equol induced an apoptotic nuclear morphology revealed by AO/EB staining, the presence of a comet tail, the cleavage of caspase-3 and PARP and the depletion of cIAP1, indicating its pro-apoptotic effect. In addition, equol-induced apoptosis involves the mitochondria-dependent cell-death pathway, evidenced by the depolarization of the mitochondrial membrane potential, the cleavage of caspase-9 and the depletion of Bcl-xL and full-length Bid. Moreover, treating MGC-803 cells with equol induced the sustained activation of extracellular signal-regulated kinase (ERK), and inhibiting ERK by U0126, a MEK/ERK pathway inhibitor, significantly attenuated the equol-induced cell apoptosis. These results suggest that equol induces mitochondria-dependent apoptosis in human gastric cancer MGC-803 cells via the sustained activation of the ERK1/2 pathway. Therefore, equol may be a novel candidate for the chemoprevention and therapy of gastric cancer.