References
- Bartoli MH, Boitard M, Fessi H, et al (1990). In vitro and in vivo antitumoral activity of free and encapsulated Taxol. J Microencapsul, 7, 191-7. https://doi.org/10.3109/02652049009021832
- Chen DB, Yang TZ, Lu WL, Zhang Q (2001). In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing Paclitaxel. Chem Pharm Bull, 49, 1444-7. https://doi.org/10.1248/cpb.49.1444
- Crosasso P, Ceruti M, Brusa P, et al (2000). Preparation, characterization and properties of sterically stabilized paclitaxel-containing liposomes. J Control Rel, 63, 19-30. https://doi.org/10.1016/S0168-3659(99)00166-2
- Deng C, Jiang Y, Cheng R, Meng F, Zhong Z (2012). Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today, 7, 467-480. https://doi.org/10.1016/j.nantod.2012.08.005
- Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC (2011). Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci U S A, 108, 1850-5. https://doi.org/10.1073/pnas.1011379108
- Fonseca C, Simoes S, Gaspar R (2002). Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Rel, 83, 273-86. https://doi.org/10.1016/S0168-3659(02)00212-2
- Goldspiel BR (1997). Clinical overview of the taxanes. Pharmacothe, 17, 110-25.
- Gurses N, Topcul M (2013) The effect of abraxane on cell kinetic parameters of HeLa cells. Asian Pac J Cancer Prev, 14, 4229-33. https://doi.org/10.7314/APJCP.2013.14.7.4229
- Hamidi M, Azadi A, Rafiei P (2008). Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev, 60, 1638-49. https://doi.org/10.1016/j.addr.2008.08.002
- Jabbari E, Yang X, Moeinzadeh S, He X (2013). Drug release kinetics, cell uptake, and tumor toxicity of hybrid VVVVVVKK peptide-assembled polylactide nanoparticles. Eur J Pharm Biopharm, 84, 49-62. https://doi.org/10.1016/j.ejpb.2012.12.012
- Jeong B, Bae YH, Kim SW (1999). Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromol, 32, 7064-9. https://doi.org/10.1021/ma9908999
- Kataoka K, Harada A, Nagasaki Y (2001). Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev, 47, 113-31. https://doi.org/10.1016/S0169-409X(00)00124-1
- Kikuchi A, Okano T (1998). Biorelated Polymers and Gels. Academic Press, Boston, MA, 1-28.
- Kwon GS, Okano T (1996). Polymeric micelles as new drug carriers. Adv Drug Deliv Rev, 21, 107-16. https://doi.org/10.1016/S0169-409X(96)00401-2
- Lee J, Lee SC, Acharya G, Chang C, Park K (2003). Hydrotropic solubilization of paclitaxel: analysis of chemical structures for hydrotropic property. Pharm Res, 20, 1022-30. https://doi.org/10.1023/A:1024458206032
- Lerner BH (2001). Breast Cancer Wars. Oxford University Press. New York.
- Liechty WB, Peppas NA (2012). Expert opinion: Responsive polymer nanoparticles in cancer therapy. Eur J Pharm Biopharm, 80, 241-6. https://doi.org/10.1016/j.ejpb.2011.08.004
- Ludenberg BB (1997). A submicron lipid emulsion coated with amphipathic polyethylene glycol for parenteral administration of paclitaxel (Taxol). J Pharm Pharmacol, 49, 16-21. https://doi.org/10.1111/j.2042-7158.1997.tb06744.x
- Marshall CJ (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signalregulated kinase activation. Cell, 80, 179-85. https://doi.org/10.1016/0092-8674(95)90401-8
- Mashinchian O, Salehi R, Dehghan G, et al (2010). Novel thermosensitivepoly (N-isopropylacrylamide-covinylpyrrolidone-co-methacrylic acid) nanosystems for delivery of natural products. Inter J Drug Del, 2, 278-86. https://doi.org/10.5138/ijdd.2010.0975.0215.02039
- Mosmann T (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods, 65, 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
- Petros RA, DeSimone JM (2010). Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov, 9, 615-27. https://doi.org/10.1038/nrd2591
- Rfsler A, Vandermeulen GM, Klok HA (2001). Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliv Rev, 53, 95-108. https://doi.org/10.1016/S0169-409X(01)00222-8
- Rosler A, Vandermeulen GW, Klok HA (2001). Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Del Rev, 53, 95-108. https://doi.org/10.1016/S0169-409X(01)00222-8
- Sharma A, Straubinger RM (1994). Novel taxol formulations: preparation and characterization of Taxol containing liposomes. Pharm Res, 11, 889-96. https://doi.org/10.1023/A:1018994111594
-
Shroff K, Kokkoli E (2012). PEGylated liposomal doxorubicin targeted to
$I{\pm}I^21$ -expressing MDA-MB-231 breast cancer cells. Langmuir, 28, 4729-36. https://doi.org/10.1021/la204466g - Surapaneni MS, Das SK, Das NG (2012). Designing paclitaxel drug delivery systems aimed at improved patient outcomes: current status and challenges. ISRN Pharmaco, 2012, 623139.
- Tabar L, Dean PB (2004). Mammography and breast cancer: the new era. Int J Gynaecol Obstet, 82, 319-26.
- Trubetskoy VS (1999). Polymeric micelles as carriers of diagnostic agents. Adv Drug Deliv Rev, 37, 81-8. https://doi.org/10.1016/S0169-409X(98)00100-8
- Verderio P, Bonetti P, Colombo M, Pandolfi L, Prosperi D (2013). Intracellular drug release from curcumin-loaded PLGA nanoparticles induces G2/M block in breast cancer cells. Biomacromole, 14, 672-82. https://doi.org/10.1021/bm3017324
- Verma AK, Chanchal A, Maitra A (2010). Co-polymeric hydrophilic nanospheres for drug delivery: Release kinetics and cellular uptakes. Ind J Exp Bio, 48, 1043-52.
- Wang M, Thanou M (2010). Targeting nanoparticles to cancer. Pharmacol Res, 62, 90-9. https://doi.org/10.1016/j.phrs.2010.03.005
- Wang YM, Sato H, Adachi I, Hirikoshi I (1996). Preparation and characterization of poly(lactic-co-glycolic acid) microspheres for targeted delivery of a novel anticancer agent. Taxol Chem Pharm Bull, 44, 1935-40. https://doi.org/10.1248/cpb.44.1935
- Ward MA, Georgiou TK (2011). Thermoresponsive polymers for biomedical applications. Polymers, 3, 1215-42. https://doi.org/10.3390/polym3031215
- Yang D, Van S, Jiang X, Yu L (2011). Novel free paclitaxel-loaded poly(L-y-glutamylglutamine)-paclitaxel nanoparticles. Int J Nanomed, 6, 85-91.
Cited by
- Comparison of Inhibitory Effects of 17-AAG Nanoparticles and Free 17-AAG on HSP90 Gene Expression in Breast Cancer vol.15, pp.17, 2014, https://doi.org/10.7314/APJCP.2014.15.17.7113
- Synthesis, Characterization and in vitro Anti-Tumoral Evaluation of Erlotinib-PCEC Nanoparticles vol.15, pp.23, 2014, https://doi.org/10.7314/APJCP.2014.15.23.10281
- Nanoparticles Promise New Methods to Boost Oncology Outcomes in Breast Cancer vol.16, pp.5, 2015, https://doi.org/10.7314/APJCP.2015.16.5.1683
- Effect of Paclitaxel-loaded Nanoparticles on the Viability of Human Hepatocellular Carcinoma HepG2 Cells vol.16, pp.5, 2015, https://doi.org/10.7314/APJCP.2015.16.5.1725