• 제목/요약/키워드: nuclear power station

검색결과 156건 처리시간 0.028초

Prediction of radioactivity releases for a Long-Term Station Blackout event in the VVER-1200 nuclear reactor of Bangladesh

  • Shafiqul Islam Faisal ;Md Shafiqul Islam;Md Abdul Malek Soner
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.696-706
    • /
    • 2023
  • Consequences of an anticipated Beyond Design Basis Accident (BDBA) Long-Term Station Blackout (LTSBO) event with complete loss of grid power in the VVER-1200 reactor of Rooppur Nuclear Power Plant (NPP) of Unit-1 are assessed using the RASCAL 4.3 code. This study estimated the released radionuclides, received public radiological dose, and ground surface concentration considering 3 accident scenarios of International Nuclear and Radiological Event Scale (INES) level 7 and two meteorological conditions. Atmospheric transport, dispersion, and deposition processes of released radionuclides are simulated using a straight-line trajectory Gaussian plume model for short distances and a Gaussian puff model for long distances. Total Effective Dose Equivalent (TEDE) to the public within 40 km and radionuclides contribution for three-dose pathways of inhalation, cloudshine, and groundshine owing to airborne releases are evaluated considering with and without passive safety Emergency Core Cooling System (ECCS) in dry (winter) and wet (monsoon) seasons. Source term and their release rates are varied with the functional duration of passive safety ECCS. In three accident scenarios, the TEDE of 10 mSv and above are confined to 8 km and 2 km for the wet and dry seasons, respectively in the downwind direction. The groundshine dose is the most dominating in the wet season while the inhalation dose is in the dry season. Total received doses and surface concentration in the wet season near the plant are higher than those in the dry season due to the deposition effect of rain on the radioactive substances.

Hardware-Oriented Reliability Centered Maintenance for the Diesel Generators of Wolsong Unit 1

  • Bae, Sang-Min;Park, Jin-Hee;Kim, Tae-Woon;Lee, Yoon-Kee;Song, Jin-Bae
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.587-591
    • /
    • 1997
  • The DGs (Diesel Generators) in NPP (Nuclear Power Plant) has been used for the emergency electric power source to shut down the nuclear reactor safely in case of station blackout. The RCM (Reliability Centered Maintenance) has been applied to DGs for increasing the safety of NPP. The structured defects of DG were not remedied by the improvement of maintenance method. As the first stage of RCM, to find the structured defects, its failure modes were searched and analyzed through the ten year maintenance information. The structured defects such as the air compressor, the lubricating oil pressure, and the insufficient load were the root causes of main failures. The air reservoir reinstallation, the lubricating oil tube modification, the load bank installation, and the qualitative instrumentation were the solutions for the hardware oriented RCM of DGs. There remains the software oriented RCM such as the rejection of useless maintenance, the preventive maintenance, the database of maintenance information, and the predictive maintenance.

  • PDF

원자력발전소 직류전원계통용 축전지 성능시험 분석 (Analysis of Battery Performance Test for DC Power System in Nuclear Power Plant)

  • 김대식;차한주
    • 전기학회논문지P
    • /
    • 제63권2호
    • /
    • pp.61-68
    • /
    • 2014
  • Function of battery bank stores energy for DC load in general, and DC power system of the nuclear power plant is used to supply DC loads for safety- featured instrumentation and control such as inverter, class 1E power system control and indication, and station annunciation. Class 1E DC power system must provide a power for the design basis accident conditions, and adequate capacity must be available during loss of AC power and subsequent safe shutdown of the plant. In present, batteries of Class 1E DC power system of the nuclear power plant uses lead-acid batteries. Class 1E batteries of nuclear power plants in Korea are summarized in terms of specification, such as capacity, discharge rate, bank configuration and discharge end voltage, etc. This paper summarizes standards of determining battery size for the nuclear power plant, and analyzes duty cycle for the class 1E DC power system of nuclear power plant. Then, battery cell size is calculated as 2613Ah according to the standard. In addition, this paper analyzes performance test results during past 13 years and shows performance degradation in the battery bank. Performance tests in 2001 and 2005 represent that entire battery cells do not reach the discharge-end voltage. Howeyer, the discharge-end voltage is reached in 14.7% of channel A (17 EA), 13.8% of channel B (16 EA), 5.2% of channel C (6 EA) and 16.4% of channel D (19 EA) at 2011 performance test. Based on the performance test results analysis and size calculation, battery capacity and degradation by age in Korearn nuclear power plant is discussed and would be used for new design.

대전원단지의 무효전력 출력제약에 따른 영향에 대한 연구 (A Study on the Improving Power System Reliability According to the Reactive Power Problem in the Bulk Power Station)

  • 송석하;주준영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.73-75
    • /
    • 2002
  • This paper presents the properly method of system security and facility countermeasures. We performed simulation for yearly peak of Korean power system in 2002 under the reactive power problem in a nuclear power plants. Analysis of the problems in power system operation by power flow, fault and stability study. Establishment of power system optimal operating plan by stabilizer and maintaining the reasonable voltage level.

  • PDF

DESIGN OF A FPGA BASED ABWR FEEDWATER CONTROLLER

  • Huang, Hsuanhan;Chou, Hwaipwu;Lin, Chaung
    • Nuclear Engineering and Technology
    • /
    • 제44권4호
    • /
    • pp.363-368
    • /
    • 2012
  • A feedwater controller targeted for an ABWR has been implemented using a modern field programmable gate array (FPGA), and verified using the full scope simulator at Taipower's Lungmen nuclear power station. The adopted control algorithm is a rule-based fuzzy logic. Point to point validation of the FPGA circuit board has been executed using a digital pattern generator. The simulation model of the simulator was employed for verification and validation of the controller design under various plant initial conditions. The transient response and the steady state tracking ability were evaluated and showed satisfactory results. The present work has demonstrated that the FPGA based approach incorporated with a rule-based fuzzy logic control algorithm is a flexible yet feasible approach for feedwater controller design in nuclear power plant applications.

비상디젤발전기 신뢰도에 대한 베이즈추정 (Bayes Estimate for the Reliability of Nuclear-Power Plant Emergency Diesel Generator)

  • 심규박;류부형
    • 품질경영학회지
    • /
    • 제25권3호
    • /
    • pp.108-118
    • /
    • 1997
  • A commercial nuclear power station contains at least two emergency diesel generates(EDG) to control the risk of severe core demage during the station blackout accidents. Therefore the reliability of the EDG's to start and load-run on demend must be maintained at a sufficiently high level. Until now, a simple assessment of start and load-run success rates was used to calculate the EDG's reliability. However, this method has been found to contain many defects. Recently, the work of Martz et al.(1996) proposed the use of the Bayes estimator to find the EDG's reliability. In this paper, we will propose confidence interval for the Bayes estimator, compare the above two methods and, using practical examples, illustrate why the Bayes estimator method is more reasonable in our situation.

  • PDF

A Study on the Application of Composite Reliability to Estimate the EDG Reliability

  • Shim, Kyu-Bark
    • 품질경영학회지
    • /
    • 제26권4호
    • /
    • pp.265-276
    • /
    • 1998
  • A commercial nuclear power station contains at least two emergency diesel generators(EDG) to control the risk of severe core damage during station blackout accidnets. Therefore, thereliability of the EDG's to start and load-run on demand must be maintained at a sufficiently high level. Until now, a simple assessment of start and load-run success rates was used to calculate the EDG reliability. However, this method has been found to contain many defects. Recently, the work of Martz et al.(1996) proposed the use of the Bayes estimator to find EDG reliability. Shim(1996) proposed a confidence interval for the Bayes estimator, compare the above two methods. In this paper, we introduce the notion of "Composite Reliablility" to estimate the reliability of nuclear-power plant EDG, and using practical examples, illustrate which method is more a, pp.opriate in our situation.situation.

  • PDF

분산제어를 위한 필드제어시스템의 실시간 데이터 연계 (a Study on the Real-time Data Linkage of Field Control System for Distributed Control)

  • 김석곤;송성일;오응세;이성우;곽귀일;이은웅;박태림
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.777-779
    • /
    • 2003
  • This paper describes the real-time data linkage of the field control system for distributed control in nuclear power plant environment. The most important keys of digital control system in nuclear power plant are the reliability and stability of system, and real-time control ability. This Paper brought up the hardware construction using a new method about the design of each station located upon control transmission network to improve real-time ability of field control system, and measured the station binding time between devices connected to field control module. And it was confirmed performance improvement of overall system for real-time data linkage between control devices.

  • PDF

ESTABLISHMENT OF A SEVERE ACCIDENT MITIGATION STRATEGY FOR AN SBO AT WOLSONG UNIT 1 NUCLEAR POWER PLANT

  • Kim, Sungmin;Kim, Dongha
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.459-468
    • /
    • 2013
  • During a station blackout (SBO), the initiating event is a loss of Class IV and Class III power, causing the loss of the pumps, used in systems such as the primary heat transporting system (PHTS), moderator cooling, shield cooling, steam generator feed water, and re-circulating cooling water. The reference case of the SBO case does not credit any of these active heat sinks, but only relies on the passive heat sinks, particularly the initial water inventories of the PHTS, moderator, steam generator secondary side, end shields, and reactor vault. The reference analysis is followed by a series of sensitivity cases assuming certain system availabilities, in order to assess their mitigating effects. This paper also establishes the strategies to mitigate SBO accidents. Current studies and strategies use the computer code of the Integrated Severe Accident Analysis Code (ISAAC) for Wolsong plants. The analysis results demonstrate that appropriate strategies to mitigate SBO accidents are established and, in addition, the symptoms of the SBO processes are understood.

Effect of mitigation strategies in the severe accident uncertainty analysis of the OPR1000 short-term station blackout accident

  • Wonjun Choi;Kwang-Il Ahn;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4534-4550
    • /
    • 2022
  • Integrated severe accident codes should be capable of simulating not only specific physical phenomena but also entire plant behaviors, and in a sufficiently fast time. However, significant uncertainty may exist owing to the numerous parametric models and interactions among the various phenomena. The primary objectives of this study are to present best-practice uncertainty and sensitivity analysis results regarding the evolutions of severe accidents (SAs) and fission product source terms and to determine the effects of mitigation measures on them, as expected during a short-term station blackout (STSBO) of a reference pressurized water reactor (optimized power reactor (OPR)1000). Three reference scenarios related to the STSBO accident are considered: one base and two mitigation scenarios, and the impacts of dedicated severe accident mitigation (SAM) actions on the results of interest are analyzed (such as flammable gas generation). The uncertainties are quantified based on a random set of Monte Carlo samples per case scenario. The relative importance values of the uncertain input parameters to the results of interest are quantitatively evaluated through a relevant sensitivity/importance analysis.