• 제목/요약/키워드: nuclear physics

검색결과 1,063건 처리시간 0.038초

Mesocarbon microbead densified matrix graphite A3-3 for fuel elements in molten salt reactors

  • Wang, Haoran;Xu, Liujun;Zhong, Yajuan;Li, Xiaoyun;Tang, Hui;Zhang, Feng;Yang, Xu;Lin, Jun;Zhu, Zhiyong;You, Yan;Lu, Junqiang;Zhu, Libing
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1569-1579
    • /
    • 2021
  • This study aims to provide microstructural characterization for the matrix graphite which molten salt reactors (MSRs) use, and improve resistance to molten salt infiltration of the matrix graphite for fuel elements. Mesocarbon microbeads (MCMB) densified matrix graphite A3-3 (MDG) was prepared by a quasi-isostatic pressure process. After densification by MCMBs with average particle sizes of 2, 10, and 16 ㎛, the pore diameter of A3-3 decreased from 924 nm to 484 nm, 532 nm, and 778 nm, respectively. Through scanning electron microscopy, the cross-section energy spectrum and time-of-flight secondary ion mass spectrometry, resistance levels of the matrix graphite to molten salt infiltration were analyzed. The results demonstrate that adding a certain proportion of MCMB powders can improve the anti-infiltration ability of A3-3. Meanwhile, the closer the particle size of MCMB is to the pore diameter of A3-3, the smaller the average pore diameter of MDG and the greater the densification. As a matrix graphite of fuel elements in MSR was involved, the thermal and mechanical properties of matrix graphite MDG were also studied. When densified by the MCMB matrix graphite, MDGs can meet the molten salt anti-infiltration requirements for MSR operation.

The presence of carcinogenic radon in the Padma River water, adjacent to the Rooppur Nuclear Power Plant

  • M.M. Mahfuz Siraz;M.S. Alam;Jubair A.M.;S.C. Das;J. Ferdous;Z. Hossain;S. Das;Mayeen Uddin Khandaker;D.A. Bradley;Shinji Tokonami;S. Yeasmin
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.3046-3053
    • /
    • 2023
  • Radon is a naturally occurring carcinogenic agent, poses a serious health hazard when inhaled or ingested in significant amounts. The water of the Padma river will be used as a tertiary coolant for the soon-to-be-commissioned 'Rooppur Nuclear Power Plant'. Hence, it is important to assess the radiological status of the river prior to the commission of this power plant. Therefore, for the first time, 25 samples of water were collected from various locations of the Padma River and analyzed for radon concentration using the RAD H2O (DURRIDGE) radon monitoring device. The radon concentrations were found in the range from 0.077 ± 0.036 to 0.494 ± 0.211 Bq/L with a mean of 0.250 ± 0.093 Bq/L. All the concentrations were found to be below the recommended limits of WHO (100 Bq/L) and USEPA (11.1 Bq/L). The mean annual effective dose due to the radon exposure via inhalation and ingestion pathways were 0.638 µSv/y and 0.629 µSv/y, respectively, which were all well below the annual effective dose recommended by WHO (0.1 mSv/y). Since Bangladesh lacks a national safety limit of radon in water, this pioneering study provides baseline data on radon levels for the environment around Rooppur Nuclear Power Plant.

Neutron activation analysis: Modelling studies to improve the neutron flux of Americium-Beryllium source

  • Didi, Abdessamad;Dadouch, Ahmed;Jai, Otman;Tajmouati, Jaouad;Bekkouri, Hassane El
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.787-791
    • /
    • 2017
  • Americium-beryllium (Am-Be; n, ${\gamma}$) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci), yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources) experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

Design, fabrication and test of a taper-type half-wave superconducting cavity with the optimal beta of 0.15 at IMP

  • Yue, Weiming;Zhang, Shengxue;Li, Chunlong;Jiang, Tiancai;Liu, Lubei;Wang, Ruoxu;Huang, Yulu;Tan, Teng;Guo, Hao;Zaplatin, Evgeny;Xiong, Pingran;Wu, Andong;Wang, Fengfeng;Zhang, Shenghu;Huang, Shichun;He, Yuan;Yao, Zeen;Zhao, Hongwei
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1777-1783
    • /
    • 2020
  • As a part of R&D work for the high intensity proton linac of China Accelerator Driven Sub-critical System project, a superconducting half-wave cavity with a frequency of 162.5 MHz and an optimal beta of 0.15 (HWR015) has been developed at Institute of Modern Physics (IMP), Chinese Academy of Sciences. In this paper, the design and test results will be described in detail. We introduced a new stiffening strategy for the HWR cavity, the simulation results show that the cavity has much lower frequency sensitivity coefficient (df/dp), Lorentz force detuning coefficient (KL), and can achieve more stable mechanical properties. The performance of the HWR cavity operated in cryostat will be also reported.

The Magnetic Filtering Vacuum Arc Film Deposition System and Its Applications

  • Wang, G.F.;Zhang, H.X.;Zhang, H.J.;Zhu, H.
    • 한국진공학회지
    • /
    • 제6권S1호
    • /
    • pp.137-140
    • /
    • 1997
  • A cathodic arc with beam filter is employed for the deposition of metallic and hydrogen-free amorphous carbon films. A solenoid filter is used to prevent macropaticles and nonionized atoms from reaching the substrate. The detail transport characters of the filter are presented in the paper. With an optmum filter arrangement we are able to obtain a filter output of 18.4% of the total number of ions produced by the vacuum arc discharge. The deposited amorphous cabon thin film contains no hydrogen and a high fraction of $sp^3$ is determined by XPS. A dense Ti film deposited on H13 steel improves the corrosion resistance of the H13 steel and significant improvements of corrosion resistance were observed by implanting Ti, C in the film.

  • PDF

The investigation of a new fast timing system based on DRS4 waveform sampling system

  • Zhang, Xiuling;Du, Chengming;Chen, Jinda;Yang, Herun;kong, Jie;Yang, Haibo;Ma, Peng;Shi, Guozhu;Duan, limin;Hu, Zhengguo
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.432-438
    • /
    • 2019
  • In the study of nuclear structure, the fast timing technique can be used to measure the lifetime of excited states. In the paper, we have developed a new fast timing system, which is made up of two $LaBr_3:Ce$ detectors and a set of waveform sampling system. The sampling system based on domino ring sampler version 4 chip (DRS4) can digitize and store the waveform information of detector signal, with a smaller volume and higher timing accuracy, and the waveform data are performed by means of digital waveform analysis methods. The coincidence time resolution of the fast timing system for two annihilation 511 keV ${\gamma}$ photon is 200ps (FWHM), the energy resolution is 3.5%@511 keV, and the energy linear response in the large dynamic range is perfect. Meanwhile, to verify the fast timing performance of the system, the $^{152}Gd-2_1^+$ state form ${\beta}^+$ decay of $^{152}Eu$ source is measured. The measured lifetime is $45.3({\pm}5.0)ps$, very close to the value of the National Nuclear Data Center (NNDC: $46.2({\pm}3.9)ps$). The experimental results indicate that the fast timing system is capable of measuring the lifetime of dozens of ps. Therefore, the system can be widely used in the research of the fast timing technology.