DOI QR코드

DOI QR Code

The presence of carcinogenic radon in the Padma River water, adjacent to the Rooppur Nuclear Power Plant

  • M.M. Mahfuz Siraz (Health Physics Division, Atomic Energy Centre) ;
  • M.S. Alam (Department of Nuclear Engineering, University of Dhaka) ;
  • Jubair A.M. (Department of Nuclear Engineering, University of Dhaka) ;
  • S.C. Das (Institute of Nuclear Minerals, Bangladesh Atomic Energy Commission) ;
  • J. Ferdous (Health Physics Division, Atomic Energy Centre) ;
  • Z. Hossain (Health Physics Division, Atomic Energy Centre) ;
  • S. Das (Atomic Energy Centre) ;
  • Mayeen Uddin Khandaker (Department of General Educational Development, Faculty of Science and Information Technology, Daffodil International University) ;
  • D.A. Bradley (Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University) ;
  • Shinji Tokonami (Institute of Radiation Emergency Medicine, Hirosaki University) ;
  • S. Yeasmin (Health Physics Division, Atomic Energy Centre)
  • Received : 2022.07.24
  • Accepted : 2023.04.25
  • Published : 2023.08.25

Abstract

Radon is a naturally occurring carcinogenic agent, poses a serious health hazard when inhaled or ingested in significant amounts. The water of the Padma river will be used as a tertiary coolant for the soon-to-be-commissioned 'Rooppur Nuclear Power Plant'. Hence, it is important to assess the radiological status of the river prior to the commission of this power plant. Therefore, for the first time, 25 samples of water were collected from various locations of the Padma River and analyzed for radon concentration using the RAD H2O (DURRIDGE) radon monitoring device. The radon concentrations were found in the range from 0.077 ± 0.036 to 0.494 ± 0.211 Bq/L with a mean of 0.250 ± 0.093 Bq/L. All the concentrations were found to be below the recommended limits of WHO (100 Bq/L) and USEPA (11.1 Bq/L). The mean annual effective dose due to the radon exposure via inhalation and ingestion pathways were 0.638 µSv/y and 0.629 µSv/y, respectively, which were all well below the annual effective dose recommended by WHO (0.1 mSv/y). Since Bangladesh lacks a national safety limit of radon in water, this pioneering study provides baseline data on radon levels for the environment around Rooppur Nuclear Power Plant.

Keywords

Acknowledgement

The authors like to thank Albert Joydhar, Senior Scientific Assistant, Health Physics Division, Atomic Energy Centre Dhaka for helping in collection of water sample.

References

  1. S. Rani, S. Kansal, A.K. Singla, R. Mehra, Radiological risk assessment to the public due to the presence of radon in water of Barnala district, Punjab, India, Environ. Geochem. Health 43 (12) (2021) 5011-5024, https://doi.org/10.1007/s10653-021-01012-y.
  2. Y. Narayana, H.M. Somashekarappa, N. Karunakara, D.N. Avadhani, H.M. Mahesh, K. Siddappa, Natural radioactivity in the soil samples of Coastal Karnataka of South India, Health Phys. 80 (1) (2001) 24-33, https://doi.org/10.1097/00004032-200101000-00006.
  3. D.M. Bonotto, L. Caprioglio, Radon in groundwaters from Guarany aquifer, South America: environmental and exploration implications, Appl. Radiat. Isot. 57 (6) (2002) 931-940, https://doi.org/10.1016/S0969-8043(02)00230-0.
  4. T. Thumvijit, et al., Identifying indoor radon sources in Pa miang, chiang mai, Thailand, Sci. Rep. 10 (1) (2020) 1-14, https://doi.org/10.1038/s41598-020-74721-6.
  5. UNEP, United Nations Scientific Committee on the Effects of Atomic Radiation - Radiation Effects and Sources, 2016.
  6. R.D. Evans, Radium in man, Health Phys. 27 (5) (1974) 497-510, https://doi.org/10.1097/00004032-197411000-00010.
  7. N.F. Salih, Determine the contaminations of radon in the drinking water using NTDs (CR-39) and RAD7 detectors, Arabian J. Sci. Eng. 46 (6) (2021) 6061-6074, https://doi.org/10.1007/s13369-020-05267-y.
  8. H.L. Kusnetz, Radon Daughters in Mine Atmospheres da field method for determining concentrations, Am. Ind. Hyg. Assoc. Q 17 (1) (1956) 85-88, https://doi.org/10.1080/00968205609344380.
  9. S.S. Althoyaib, A. El-Taher, Natural radioactivity measurements in groundwater from Al-Jawa, Saudi Arabia, J. Radioanal. Nucl. Chem. 304 (2) (2015) 547-552, https://doi.org/10.1007/s10967-014-3874-7.
  10. S. Sharma, V. Duggal, R. Mehra, A. Rani, Radon concentration in groudwater and associated effective radon concentration in groudwater and associated effective dose assessment in, Int. J. Innov. Res. Sci. Eng. (May) (2017) 69-78.
  11. M. Shamsaddini, A. Negarestani, M. Malakootian, N. Javid, Study of radon concentration of drinking water sources in adjacent areas of Sabzevaran fault, J. Radioanal. Nucl. Chem. 326 (2) (2020) 1437-1446, https://doi.org/10.1007/s10967-020-07426-9.
  12. WHO, Indoor Radon a Public Health Perspective 110 (2007).
  13. L. Martins, A. Pereira, A. Oliveira, L.F.S. Fernandes, F.A.L. Pacheco, A new framework for the management and radiological protection of groundwater resources: the implementation of a Portuguese Action Plan for Radon in drinking water and impacts on human health, Water (Switzerland) 11 (4) (2019), https://doi.org/10.3390/w11040760.
  14. S. Nazir, S. Simnani, B.K. Sahoo, R. Mishra, T. Sharma, S. Masood, Monitoring geothermal springs and groundwater of Pir Panjal, Jammu and Kashmir, for radon contamination, J. Radioanal. Nucl. Chem. 326 (3) (2020) 1915-1923, https://doi.org/10.1007/s10967-020-07451-8.
  15. S.M. Abdallah, R.R. Habib, R.Y. Nuwayhid, M. Chatila, G. Katul, Radon measurements in well and spring water in Lebanon, Radiat. Meas. 42 (2) (2007) 298-303, https://doi.org/10.1016/j.radmeas.2006.11.004.
  16. N. Ali, E.U. Khan, P. Akhter, F. Khan, A. Waheed, Estimation of mean annual effective dose through radon concentration in the water and indoor air of Islamabad and Murree, Radiat. Protect. Dosim. 141 (2) (2010) 183-191, https://doi.org/10.1093/rpd/ncq160.
  17. C. Tansi, A. Tallarico, G. Iovine, M. Folino Gallo, G. Falcone, Interpretation of radon anomalies in seismotectonic and tectonic-gravitational settings: the south-eastern Crati graben (Northern Calabria, Italy), Tectonophysics 396 (3-4) (2005) 181-193, https://doi.org/10.1016/j.tecto.2004.11.008.
  18. N. Ahmad, J. Rehman, J. ur Rehman, G. Nasar, Assessments of 226Ra and 222Rn concentration in well and tap water from Sik, Malaysia, and consequent dose estimates, Hum. Ecol. Risk Assess. 25 (7) (2019) 1697-1706, https://doi.org/10.1080/10807039.2018.1559034.
  19. A.B. Tanner, Radon Migration in the Ground: a Supplementary Review, U.S. Department of Energy, 1980.
  20. I.R. Ajayi, O.O. Kuforiji, Natural radioactivity measurements in rock samples of Ondo and Ekiti states in Nigeria, Radiat. Meas. 33 (1) (2001) 13-16, https://doi.org/10.1016/S1350-4487(00)00092-5.
  21. J. Yong, et al., Radon concentration measurement and effective dose assessment in different brands of commercial bottled water produced in China, Water Sci. Technol. Water Supply 20 (5) (2020) 1581-1591, https://doi.org/10.2166/ws.2020.061.
  22. G. Krishan, M.S. Rao, C.P. Kumar, P. Semwal, Radon concentration in groundwater of east coast of West Bengal, India, J. Radioanal. Nucl. Chem. 303 (3) (2015) 2221-2225, https://doi.org/10.1007/s10967-014-3808-4.
  23. J. Yong, Q. Liu, B. Wu, Y. Hu, G. Feng, Assessment of radiation dose hazards caused by radon and its progenies in tap water by the human dosimetric model, J. Water Health 19 (6) (2021) 933-945, https://doi.org/10.2166/wh.2021.113.
  24. N.F. Ismail, S. Hashim, M.S. Mohd Sanusi, A.T. Abdul Rahman, D.A. Bradley, Radon levels of water sources in the southwest coastal region of Peninsular Malaysia, Appl. Sci. 11 (15) (2021), https://doi.org/10.3390/app11156842.
  25. W. Zhuo, T. Iida, X. Yang, Occurrence of 222Rn, 226Ra, 228Ra and U in groundwater in fujian province, China, J. Environ. Radioact. 53 (1) (2001) 111-120, https://doi.org/10.1016/S0265-931X(00)00108-9.
  26. B.C. Shivakumara, M.S. Chandrashekara, E. Kavitha, L. Paramesh, Studies on 226Ra and 222Rn concentration in drinking water of Mandya region, Karnataka State, India, J. Radiat. Res. Appl. Sci. 7 (4) (2014) 491-498, https://doi.org/10.1016/j.jrras.2014.08.005.
  27. UNSCEAR, Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes, I, 2000.
  28. M.M. Orosun, T.B. Ajibola, F.C. Akinyose, O. Osanyinlusi, O.D. Afolayan, M.O. Mahmud, Assessment of ambient gamma radiation dose and annual effective dose associated with radon in drinking water from gold and lead mining area of Moro, North-Central Nigeria, J. Radioanal. Nucl. Chem. 328 (1) (2021) 129-136, https://doi.org/10.1007/s10967-021-07644-9.
  29. M.M. Orosun, M.R. Usikalu, K.J. Oyewumi, T.A. Adagunodo, Natural radionuclides and radiological risk assessment of granite mining field in Asa, Northcentral Nigeria, MethodsX 6 (2019) 2504-2514, https://doi.org/10.1016/j.mex.2019.10.032.
  30. S. Bello, R. Nasiru, N.N. Garba, D.J. Adeyemo, Annual effective dose associated with radon, gross alpha and gross beta radioactivity in drinking water from gold mining areas of Shanno and Bagwai, Kano state, Nigeria, Microchem. J. 154 (2020), 104551, https://doi.org/10.1016/j.microc.2019.104551. October 2019.
  31. E.B. Faweya, O.A. Agbetuyi, A.O. Talabi, T. Adewumi, O. Faweya, Radiological implication of 222Rn concentrations in waters from quarries environs, correlation with 226Ra concentrations and rocks geochemistry, Arabian J. Geosci. 14 (11) (2021), https://doi.org/10.1007/s12517-021-07385-9.
  32. K.M. Rajashekara, Y. Narayana, K. Siddappa, 222Rn concentration in ground water and river water of coastal Karnataka, Radiat. Meas. 42 (3) (2007) 472-478, https://doi.org/10.1016/j.radmeas.2006.12.010.
  33. US EPA, Radon in Drinking Water Regulations, 2012.
  34. M.M. Billah, Mapping and monitoring erosion-accretion in an alluvial river using satellite imagery - the river bank changes of the Padma river in Bangladesh, Quaest. Geogr. 37 (3) (2018) 87-95, https://doi.org/10.2478/quageo-2018-0027.
  35. S. Hassan, a F.M. Akhtaruzzaman, Environmental change detection of the Padma river in the north-western part of Bangladesh using multi-date landsat data, Proc. Int. Conf. Environ. Asp. Bangladesh (October) (2010) 193-195.
  36. A. Islam, Z. Sein, V. Ongoma, M. Islam, M. Alam, F. Ahmed, Geomorphological and land use mapping: a case study of Ishwardi under Pabna district, Bangladesh, Adv. Res. 4 (6) (2015) 378-387, https://doi.org/10.9734/air/2015/14149.
  37. S. De Silva, E. Nigel, R. Wightman, Geotechnical ground investigation for the Padma main bridge, in: IABSE-JSCE Joint Conference on Advances in Bridge Engineering-II, 2010, pp. 427-436.
  38. M.T. Islam, River Channel Migration : a Remote Sensing and Gis Analysis, 2010, ESA Living Planet Symp, 2010. July.
  39. M. A, , et al.Rahman, RIVER SANDS OF BANGLADESH, LAP LAMBERT ACADEMIC PUBL, 2014.
  40. S. Ali, E.M. Limited, S.S. Ahmed, Geochemical Characteristics of Recent Sediments of Channel Bar of the Ganges (Padma) River, Bangladesh, 2019. December 2021.
  41. J.I.C.A. Jica, Groundwater Modelling of the Proposed Site of Bheramara Power Station and Surrounding Areas, Eng. Assoc. Limited, Dhaka., 2008. Feasibility report.
  42. International Atomic Energy Agency, Guidelines on soil and vegetation sampling for radiological monitoring, Tech. Reports Ser. No. 486 (486) (2019).
  43. DURRIDGE Company Inc., RAD H 2 0 User Manual (2011) 1-29, 978.
  44. H. Yakut, E. Tabar, Z. Zenginerler, N. Demirci, F. Ertugral, Measurement of 222Rn concentration in drinking water in Sakarya, Turkey, Radiat. Protect. Dosim. 157 (3) (2013) 397-406, https://doi.org/10.1093/rpd/nct157.
  45. K.M. Opondo, K. Sims, Electronic radon detector user manual [Online]. Available: https://durridge.com/documentation/RAD7.Manual.pdf, 2012.
  46. U. EPA, Superfund program representative sampling guidance, Program 4 (1995) 1-58. December.
  47. UNSCEAR, SOURCES AND EFFECTS OF IONIZING RADIATION, United Nations Scientific Committee on the Effects of Atomic Radiation, I, c, 2010.
  48. I. Opoku-Ntim, O. Gyampo, A.B. Andam, Risk assessment of radon in some bottled water on the ghanaian market, Environ. Res. Commun. 1 (10) (2019), 105001, https://doi.org/10.1088/2515-7620/ab4568.
  49. WHO, Guidelines for Drinking-Water Quality, fourth ed., incorporating the 1st addendum, 2017.
  50. S. S, ahin Bal, E. Tanriverdi, S. Yalcin, M. Dogru, F. Ozbey, The radon concen- € trations of some waters in Bitlis (Turkey) and their dose estimates, Environ. Dev. Sustain. 23 (12) (2021) 17650-17667, https://doi.org/10.1007/s10668-021-01404-1.
  51. G.M. Shilpa, B.N. Anandaram, T.L. Mohankumari, Measurement of 222Rn concentration in drinking water in the environs of Thirthahalli taluk, Karnataka, India, J. Radiat. Res. Appl. Sci. 10 (3) (2017) 262-268, https://doi.org/10.1016/j.jrras.2017.05.007.
  52. F. Khan, N. Ali, E.U. Khan, N.U. Khattak, K. Khan, Radon monitoring in water sources of Balakot and Mansehra cities lying on a geological fault line, Radiat. Protect. Dosim. 138 (2) (2009) 174-179, https://doi.org/10.1093/rpd/ncp214.
  53. F. Oner, H.A. Yalim, A. Akkurt, M. Orbay, The measurements of radon concentrations in drinking water and the Yes, ilirmak River water in the area of Amasya in Turkey, Radiat. Protect. Dosim. 133 (4) (2009) 223-226, https://doi.org/10.1093/rpd/ncp049.
  54. D.O. Kareem, A.A. Ibrahim, O.S. Ibrahiem, Heavy metal and radon gas concentration levels in Khasa River in Kirkuk City (NE Iraq) and the associated health effects, Arabian J. Geosci. 13 (19) (2020), https://doi.org/10.1007/s12517-020-06037-8.
  55. A.L. Marques, W. Dos Santos, L.P. Geraldo, Direct measurements of radon activity in water from various natural sources using nuclear track detectors, Appl. Radiat. Isot. 60 (6) (2004) 801-804, https://doi.org/10.1016/j.apradiso.2004.01.015.
  56. K.C. Shivanandappa, N. Yerol, Radon concentration in water, soil and sediment of Hemavathi River environments, Indoor Built Environ. 27 (5) (2018) 587-596, https://doi.org/10.1177/1420326X16688522.
  57. D.C. Nita, M. Moldovan, T. Sferle, V.D. Ona, B.D. Burghele, Radon concentrations in water and indoor air in North - west regions of Romania, Rom. Rep. Phys. 58 (SUPPL) (2013) 2016-2020.
  58. A. Hussein, Evaluation of the radiation dose from radon ingestion from different types of drinking water samples in Egypt using nuclear track detectors (LR-115 Type II), Radiat. Protect. Environ. 42 (4) (2019) 168, https://doi.org/10.4103/rpe.rpe_21_19.
  59. M. Zalewski, M. Karpinska, Z. Mnich, J. Kapala, P. Zalewski, Study of 222Rn concentrations in drinking water in the north-eastern hydroregions of Poland, J. Environ. Radioact. 53 (2) (2001) 167-173, https://doi.org/10.1016/S0265-931X(00)00122-3.