DOI QR코드

DOI QR Code

Neutron activation analysis: Modelling studies to improve the neutron flux of Americium-Beryllium source

  • Didi, Abdessamad (Advanced Technology and Integration System, Department of Physics, Faculty of Science Dhar Mehraz, University Sidi Mohamed Ben Abdellah) ;
  • Dadouch, Ahmed (Advanced Technology and Integration System, Department of Physics, Faculty of Science Dhar Mehraz, University Sidi Mohamed Ben Abdellah) ;
  • Jai, Otman (Laboratory of Radiation and Nuclear Systems, Department of Physics, Faculty of Sciences) ;
  • Tajmouati, Jaouad (Advanced Technology and Integration System, Department of Physics, Faculty of Science Dhar Mehraz, University Sidi Mohamed Ben Abdellah) ;
  • Bekkouri, Hassane El (Advanced Technology and Integration System, Department of Physics, Faculty of Science Dhar Mehraz, University Sidi Mohamed Ben Abdellah)
  • Received : 2016.09.15
  • Accepted : 2017.02.02
  • Published : 2017.08.25

Abstract

Americium-beryllium (Am-Be; n, ${\gamma}$) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci), yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources) experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

Keywords

References

  1. J.Y. Zevallos-Chavez, C.B. Zamboni, Evaluation of the neutron flux distribution in an AmBe irradiator using the MCNP-4C code, Braz. J. Phys. 35 (2005) 787-800.
  2. G.F. Knoll, Radiation Detection and Measurement, second ed, John Wiley and Sons, New York, 1969, pp. 21-25.
  3. M. Ali-Abdallah, N.A. Mansour, Neutron activation analysis of cement bulk samples, Adv. Appl. Sci. Res. 2 (2011) 613-620.
  4. A. Didi, A. Dadouch, H. El Bekkouri, Feasibility study for production of iodine-131 using dioxide of tellurium-130, Int. J. Pharm. Pharmaceut. Sci. 8 (2016) 327-331. https://doi.org/10.22159/ijpps.2016v8i11.13595
  5. A. Didi, A. Dadouch, J. Tajmouati, O. Jai, Calculating concentrations of elements in sample and compare with standard certified results of the International Atomic Energy Agency (IAEA) Soil-7, Pharm. Chem. 8 (2016) 250-255.
  6. J. Yang, Y. Yang, Y. Li, M. Liu, Y. Cheng, Monte-Carlo simulation of cement neutron field distribution characteristics in PGNAA, Nucl. Sci. Tech. 23 (2012) 337-343.
  7. K.G. Siddappa, K.M. Balakrishna, Neutron and gamma activation analyses using microtron facility, Trends NDE Sci. Technol. Proc. 14th World Conf. Non-Destructive Testing, New Delhi 2 (1996) 389-392.
  8. P.A. Lessing, I. Glagolenko, High Purity Americium- 241 for Fuel Cycle R & D Program, Idaho National Laboratory Idaho Falls, ID 83415-3870 INMM, 2011.
  9. J.C. Vitorelli, A.X. Silva, V.R. Crispim, E.S. da Fonseca, W.W. Pereira, Monte Carlo simulation of response function for a NaI(Tl) detector for gamma rays from 241 Am/Be source, Appl. Radiation Isotopes 62 (2005) 619-622. https://doi.org/10.1016/j.apradiso.2004.07.010
  10. A. Didi, J. Tajmouati, A. Maghnouj, M. Benchiekh, O. Jai, New design of thermal neutron flux distribution of Am-Be neutron source irradiation in the paraffin moderator using MCNP-6, Mor. J. Chem. 4 (2) (2016) 285-288.
  11. T. Miura, H. Matsue, Precise determination of silicon in ceramic reference materials by prompt gamma activation analysis at JRR-3, Nucl. Eng. Technol. 48 (2016) 299-303. https://doi.org/10.1016/j.net.2016.02.005
  12. E.K. Osae, G.K. Amoh, Multi-element analysis of Gold Ore mill heads by INAA, J. Univ. Sci. Technol. Kumasi 16 (1-2) (1996) 104-107.
  13. M. Asamoah, B.J.B. Nyarko, J.J. Fletcher, R.B.M. Sogbadji, S. Yamoah, S.E. Agbemava, E. Mensimah, Neutron flux distribution in the irradiation channels of Am-Be neutron source irradiation facility, Ann. Nucl. Energy 38 (6) (2011) 1219-1224, http://dx.doi.org/10.1016/j.anucene.2011.02.014.
  14. Z. Liu, J. Chen, P. Zhu, Y. Li, G. Zhang, The 4.438 MeV gamma to neutron ratio for the Am-Be neutron source, Appl. Radiat. Isot 65 (12) (2007) 1318-1321. https://doi.org/10.1016/j.apradiso.2007.04.007
  15. C.R. Peeples, Alternative to Am-Be neutron source for the compensated neutron porosity log, North Carolina State University, Raleigh (NC), 2007.
  16. Los Alamos National Laboratory report LA-UR-13-22934, Initial MCNP6 Release Overview MCNP6 Version 1.0, Monte Carlo NeParticle Transport Code System Including MCNP6.1, 2013.
  17. A.T. Augousti, Neil M. White, Sensors and their Applications VIII, Proceedings of the Eighth Conference on Sensors and their Applications, University of Southampton, Institute of Physics Pub, Bristol, Philadelphia, United Kingdom, Glasgow vol. 54, 1997, pp. 109-114.
  18. T.S. Coelho, F. Massicano, R.G. Possani, G. Fedorenko, R.S. Viana, V.A. Castro, M.A.R. Fernandes, H.A. Miot, H. Yoriyaz, International Nuclear Atlantic Conference - INAC 2011 Belo Horizonte,MG, Brazil, October 24-28, 2011 Associacao Brasileira de Energia Nuclear - ABEN, 2011.
  19. M. Tesinsky, Measurement and Monte Carlo Simulation of the Neutron Spectra of the Subcritical Reactor Experiment "Yalina Booster" Master of Science Thesis, Department of Nuclear and Reactor Physics Royal Institute of Technology In collaboration with Department of Nuclear Reactor, Czech Technical University, Stockholm, 2006.
  20. X-6 Monte Carlo Team, N-Particle Transport Code System Including MCNP6.1, and Data Libraries, MCNP6 Users Manual, Code Version 6.1.1beta, LA-CP-14-00745, Los Alamos National Security, LLC, Los Alamos National Laboratory, Los Alamos (NM), 2014.
  21. R.B.M. Sogbadji, R.G. Abrefah, B.J.B. Nyarko, E.H.K. Akaho, H.C. Odoi, S. Attakorah-Birinkorang, The design of a multisource americium-beryllium neutron irradiation facility using MCNP for the neutronic performance calculation, Appl. Radiation Isotopes 90 (2014) 192-196. https://doi.org/10.1016/j.apradiso.2014.03.017
  22. J.M. Carpenter, C.K. Loong, Element of slow neutron scattering, Basics, Techniques, and Applications, M.R.S Materials Research Society, Cambridge, UK, 2015.
  23. D.P. Gierga, Electron Photon Calculations using MCNP, Nuclear Engineering, Rensselaer Polytechnic Institute, Massachusetts Institute of Technology, Boston (MA), 1998.
  24. R.R. Greenberg, P. Bode, E.A. de Nadai-Fernandes, Neutron activation analysis: a primary method of measurement, Spectrochim. Acta Part B 66 (2011) 193-241. https://doi.org/10.1016/j.sab.2010.12.011

Cited by

  1. Empirical Law to Evaluate the Skin Dose with Photon Beam Energy and Irradiation Field Size vol.73, pp.6, 2017, https://doi.org/10.3103/s0027134918060036
  2. Spallation Yield of Neutrons Produced in Tungsten and Bismuth Target Bombarded with 0.1 to 3 GeV Proton Beam vol.73, pp.6, 2017, https://doi.org/10.3103/s0027134918060085
  3. Target Optimization Studies for the Spallation Reaction vol.73, pp.6, 2017, https://doi.org/10.3103/s0027134918060097
  4. New approach to evaluate the exit dose quality for high radioprotection and radiotherapy efficiency vol.19, pp.4, 2017, https://doi.org/10.15407/jnpae2018.04.406
  5. Deterministic Analysis of the Low Enriched Uranium SLOWPOKE-2 Research Reactor Using DRAGON-5 and DONJON-5 Codes System vol.74, pp.6, 2017, https://doi.org/10.3103/s002713491906016x