• 제목/요약/키워드: nuclear factor kappa-light-chain-enhancer of activated B cells

검색결과 47건 처리시간 0.018초

Doxorubicin에 의해 활성화된 미세 아교세포의 면역반응으로 인한 신경손상에 Noni가 미치는 영향 (Noni Inhibits Neuronal Damage Caused by the Immune Reaction of Microglial Cells Activated by Doxorubicin)

  • 정세화;이성민;하지선;양승주;김평환
    • 대한임상검사과학회지
    • /
    • 제52권4호
    • /
    • pp.389-397
    • /
    • 2020
  • Microglial cells function as major immune cells in the brain, playing an important role in the protection and damage of neurons. BV2 microglia, activated by drug stimulation, secrete inflammatory cytokines by activating the nuclear factor kappa-light-chain-enhancer of the activated B cells pathway and are involved in neuroinflammatory and immune responses. The overactivation of microglia by stimuli can cause neuronal damage, leading to brain disease. Noni, a natural product, reduces the activity of microglia to prevent neuronal damage and is a potential natural medicine because it exerts excellent regeneration and anti-inflammatory effects on damaged cells. In this study, when noni was used to treat BV2 cells stimulated by the anti-cancer drug doxorubicin, it reduced the release of pro-inflammatory cytokines from BV2. On the other hand, neuronal damage is a side effect of doxorubicin. Therefore, the cytokines released from doxorubicin-stimulated BV2 cells treated with noni had a positive effect on the neuronal viability compared to those released from doxorubicin-stimulated BV2 cells not treated with Noni. Thus, Noni increases neuronal viability. These results suggest that noni inhibits the release of cytokines by regulating the nuclear factor kappa-light-chain-enhancer of the activated B cells pathway of BV2, thereby inhibiting neuronal damage.

L-ascorbic acid induces apoptosis in human laryngeal epidermoid Hep-2 cells by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells/mitogen-activated protein kinase/Akt signaling pathway

  • Park, Jung-Sun;Kim, Yoon-Jung;Park, Sam Young;Chung, Kyung-Yi;Oh, Sang-Jin;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.169-178
    • /
    • 2020
  • L-ascorbic acid (L-AA; vitamin C) induces apoptosis in cancer cells. This study aimed to elucidate the molecular mechanisms of L-AA-induced apoptosis in human laryngeal epidermoid carcinoma Hep-2 cells. L-AA suppressed the viability of Hep-2 cells and induced apoptosis, as shown by the cleavage and condensation of nuclear chromatin and increased number of Annexin V-positive cells. L-AA decreased Bcl-2 protein expression but upregulated Bax protein levels. In addition, cytochrome c release from the mitochondria into the cytosol and activation of caspase-9, -8, and -3 were enhanced by L-AA treatment. Furthermore, apoptosis-inducing factor (AIF) and endonuclease G (EndoG) were translocated into the nucleus during apoptosis of L-AA-treated Hep-2 cells. L-AA effectively inhibited the constitutive nuclear factor-κB (NF-κB) activation and attenuated the nuclear expression of the p65 subunit of NF-κB. Interestingly, L-AA treatment of Hep-2 cells markedly activated Akt and mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase [JNK]) and and LY294002 (Akt inhibitor), SB203580 (p38 inhibitor) or SP600125 (a JNK inhibitor) decreased the levels of Annexin V-positive cells. These results suggested that L-AA induces the apoptosis of Hep-2 cells via the nuclear translocation of AIF and EndoG by modulating the Bcl-2 family and MAPK/Akt signaling pathways.

홍삼 비사포닌 분획의 단핵세포 분화와 염증반응에 대한 억제효과 (Non-saponin fraction of red ginseng inhibits monocyte-to-macrophage differentiation and inflammatory responses in vitro)

  • 강보빈;김채영;황지수;최현선
    • 한국식품과학회지
    • /
    • 제51권1호
    • /
    • pp.70-80
    • /
    • 2019
  • 본 연구에서는 홍삼 비사포닌 분획(NSF)의 항 염증 효과를 마우스 대식세포와 인간유래 단핵세포에서 확인하였다. NSF는 마우스 대식세포에서 LPS로 유도된 NO, iNOS 그리고 COX-2의 양 뿐만 아니라 IL-6, $TNF-{\alpha}$, MCP-1과 같은 염증성 싸이토카인의 생성량을 유의적으로 감소시켰다. 인간 유래 단핵세포에서는 PMA에 의해 유도되는 대식세포로의 분화를 효과적으로 억제하면서 분화인자인 $CD11{\beta}$와 CD36의 발현을 유의적으로 감소시켰다. 마우스 대식세포에서와 마찬가지로 염증성 싸이토카인들의 생성량 또한 감소하였는데, 이러한 NSF의 항 염증 효과는 두 전사인자의 조절작용에 의한 것으로 사료된다. 즉 NSF는 $NF-{\kappa}B$의 핵으로 이동을 감소시킴으로써 전사활성을 억제하여 염증성 싸이토카인들의 발현을 저해하고 이와 반대로 Nrf2의 발현과 핵으로의 이동을 증가시켜 항산화 효소이면서 항 염증 작용을 나타내는 HO-1의 발현을 촉진하는 것으로 관찰되었다. 따라서 NSF는 $NF-{\kappa}B$와 Nrf2의 두 가지 신호전달체계를 조절함으로써 항 염증 작용을 나타냈으며 이를 홍삼 NSF의 항 염증 기작으로 보고하는 바이다.

청피의 항염증효과 (Effects of Citri Reticulatae Viride Pericarpium on 4-Hydroxynonenal-Induced Inflammation in PC12 Cells)

  • 예영준;김연섭;강미숙
    • 한방비만학회지
    • /
    • 제16권2호
    • /
    • pp.79-84
    • /
    • 2016
  • Objectives: The purpose of this study was to observe the effects of Citri Reticulatae Viride Pericarpium (CP) on 4-Hydroxynonenal (4-HNE)-induced inflammation in PC12 cells. Methods: 4-HNE was treated in PC12 cell to cause inflammatory response, and then treated with CP water extract at 25, 50, and $100{\mu}g/ml$. The phosphorylation of Jun N-terminal kinase (JNK) and the expression of $NF-{\kappa}B$ in PC12 cells were determined by Western blot, respectively. Results: The phosphorylation of JNK was significantly decreased in 4-HNE-stimulated PC12 cell by the treatment of CP extract at $25{\mu}g/ml$. The 4-HNE-induced expression of nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) p65 in nuclear of the cells was significantly decreased in PC12 cell by treatment with CP extract at 25, 50, and $100{\mu}g/ml$. Conclusions: These results suggest that CP water extract has an anti-inflammatory activity through suppressing the JNK and $NF-{\kappa}B$ activation.

Knockdown of Pyruvate Kinase M Inhibits Cell Growth and Migration by Reducing NF-κB Activity in Triple-Negative Breast Cancer Cells

  • Ma, Chaobing;Zu, Xueyin;Liu, Kangdong;Bode, Ann M.;Dong, Zigang;Liu, Zhenzhen;Kim, Dong Joon
    • Molecules and Cells
    • /
    • 제42권9호
    • /
    • pp.628-636
    • /
    • 2019
  • Altered genetic features in cancer cells lead to a high rate of aerobic glycolysis and metabolic reprogramming that is essential for increased cancer cell viability and rapid proliferation. Pyruvate kinase muscle (PKM) is a rate-limiting enzyme in the final step of glycolysis. Herein, we report that PKM is a potential therapeutic target in triple-negative breast cancer (TNBC) cells. We found that PKM1 or PKM2 is highly expressed in TNBC tissues or cells. Knockdown of PKM significantly suppressed cell proliferation and migration, and strongly reduced S phase and induced G2 phase cell cycle arrest by reducing phosphorylation of the CDC2 protein in TNBC cells. Additionally, knockdown of PKM significantly suppressed $NF-{\kappa}B$ (nuclear factor kappa-light-chain-enhancer of activated B cells) activity by reducing the phosphorylation of p65 at serine 536, and also decreased the expression of $NF-{\kappa}B$ target genes. Taken together, PKM is a potential target that may have therapeutic implications for TNBC cells.

인체 지방 유래 중간엽 줄기세포의 골분화 조절 기전에서 NFAT5의 역할 (Role of NFAT5 in Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells)

  • 이선영;양지원;정진섭
    • 생명과학회지
    • /
    • 제23권4호
    • /
    • pp.471-478
    • /
    • 2013
  • 인체 중간엽 줄기세포는 다양한 세포로의 분화 및 자가증식 할 수 있는 능력뿐만 아니라 질병치료에 대한 치료적 잠재력을 가지고 있다. 줄기세포 분화의 분자 기작에 대한 이해는 줄기세포 이식의 치료 효능을 향상시킨다. 본 연구에는 인체 중간엽 줄기세포의 골분화에서 NFAT5의 역할을 밝혔다. 특이적 siRNA의 transfection으로 인한 NFAT5의 억제는 인체 중간엽 줄기세포의 골분화를 현저히 감소시켰으며, NF-${\kappa}B$ promoter 활성화 또한 세포의 증식이나 지방 세포로의 분화에 영향 없이 감소 시켰다. NFAT5의 발현 억제는 기본적으로 유도되는 NF-${\kappa}B$의 활성화와 TNF-${\alpha}$에 의해서 유도되는 NF-${\kappa}B$의 활성화를 감소시켰으나, TNF-${\alpha}$에 의해서 유도되는 NF-${\kappa}B$의 분해에는 아무런 영향을 주지 않았다. 이번 연구를 통해 NFAT5가 NF-${\kappa}B$ 경로를 조절함으로써 인체 중간엽 줄기 세포의 골분화에 아주 중요한 역할을 하는 것을 확인 할 수 있었다.

Aster saponin A2 inhibits osteoclastogenesis through mitogen-activated protein kinase-c-Fos-NFATc1 signaling pathway

  • Su, Xiang-Dong;Yang, Seo Y;Shrestha, Saroj K;Soh, Yunjo
    • Journal of Veterinary Science
    • /
    • 제23권4호
    • /
    • pp.47.1-47.11
    • /
    • 2022
  • Background: In lipopolysaccharide-induced RAW264.7 cells, Aster tataricus (AT) inhibits the nuclear factor kappa-light-chain-enhancer of activated B cells and MAPKs pathways and critical pathways of osteoclast development and bone resorption. Objectives: This study examined how aster saponin A2 (AS-A2) isolated from AT affects the processes and function of osteoclastogenesis induced by receptor activator of nuclear factor kappa-B ligand (RANKL) in RAW264.7 cells and bone marrow macrophages (BMMs). Methods: The cell viability, tartrate-resistant acid phosphatase staining, pit formation assay, polymerase chain reaction, and western blot were carried out to determine the effects of AS-A2 on osteoclastogenesis. Results: In RAW264.7 and BMMs, AS-A2 decreased RANKL-initiated osteoclast differentiation in a concentration-dependent manner. In AS-A2-treated cells, the phosphorylation of ERK1/2, JNK, and p38 protein expression were reduced considerably compared to the control cells. In RAW264.7 cells, AS-A2 suppressed the RANKL-induced activation of osteoclast-related genes. During osteoclast differentiation, AS-A2 suppressed the transcriptional and translational expression of NFATc1 and c-Fos. AS-A2 inhibited osteoclast development, reducing the size of the bone resorption pit area. Conclusion: AS-A2 isolated from AT appears to be a viable therapeutic therapy for osteolytic illnesses, such as osteoporosis, Paget's disease, and osteogenesis imperfecta.

Protopine reduces the inflammatory activity of lipopolysaccharide-stimulated murine macrophages

  • Bae, Deok-Sung;Kim, Young-Hoon;Pan, Cheol-Ho;Nho, Chu-Won;Samdan, Javzan;Yansan, Jamyansan;Lee, Jae-Kwon
    • BMB Reports
    • /
    • 제45권2호
    • /
    • pp.108-113
    • /
    • 2012
  • Protopine is an isoquinoline alkaloid contained in plants in northeast Asia. In this study, we investigated whether protopine derived from Hypecoum erectum L could suppress lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages (Raw 264.7 cells). Protopine was found to reduce nitric oxide (NO), cyclooxygenase-2 (COX-2), and prostaglandin $E_2$ ($PGE_2$) production by LPS-stimulated Raw 264.7 cells, without a cytotoxic effect. Pre-treatment of Raw 264.7 cells with protopine reduced the production of pro-inflammatory cytokines. These inhibitory effects were caused by blocking phosphorylation of mitogen-activated protein kinases (MAP kinases) and also blocking activation of a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$).

은행잎의 주성분인 bilobalide가 염증반응에 미치는 효과 (The Effects of bilobalide Extracted from Ginkgonis Folium on Inflammation)

  • 정제룡;길기정
    • 대한본초학회지
    • /
    • 제30권1호
    • /
    • pp.85-93
    • /
    • 2015
  • Objectives : Bilobalide (BIL) is a predominant sesquiterpene trilactone constituent that accounts for a partial portion of the standardized Ginkgonis Folium extract, which has been widely used to treat a variety of neurological disorders involving cerebral ischemia and neurodegeneration. In this study, it was tested whether BIL exhibits anti-inflammatory activities on inflammation response, or not. Methods : To elucidate the molecular mechanisms of BIL on pharmacological and biochemical actions in inflammation, we examined the effect of BIL on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophages. The investigation was focused on how BIL affect on inflammation-related mediators including various signals such as nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), inducible NO synthase(iNOS), cyclooxygenase-2(COX-2), interleukin-6(IL-6), tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), mitogen-activated protein kinases(MAPKs) and nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) in LPS-stimulated RAW 264.7 cells. Results : We found that BIL inhibited LPS-induced NO, $PGE_2$, IL-6 and $TNF-{\alpha}$ productions as well as the expressions of iNOS and COX-2. Furthermore, BIL suppressed the LPS-induced phosphorylation for MAPK activation. Conclusions : These results suggest that BIL has inhibitory effects on LPS-induced $PGE_2$, NO, IL-6 and $TNF-{\alpha}$ production, as well as the expressions of iNOS and COX-2 in the murine macrophage. It seems that these inhibitory effects occur by blocking the phosphorylation of MAPKs for activation. Then, BIL suppressed the activation of nuclear factor $NF-{\kappa}B$ in nucleus. These observations suggest that BIL has anti-inflammatory effect by inhibiting.

Korean Red Ginseng alleviates dehydroepiandrosterone-induced polycystic ovarian syndrome in rats via its antiinflammatory and antioxidant activities

  • Choi, Jong Hee;Jang, Minhee;Kim, Eun-Jeong;Lee, Min Jung;Park, Kyoung Sun;Kim, Seung-Hyun;In, Jun-Gyo;Kwak, Yi-Seong;Park, Dae-Hun;Cho, Seung-Sik;Nah, Seung-Yeol;Cho, Ik-Hyun;Bae, Chun-Sik
    • Journal of Ginseng Research
    • /
    • 제44권6호
    • /
    • pp.790-798
    • /
    • 2020
  • Background: Beneficial effects of Korean Red Ginseng (KRG) on polycystic ovarian syndrome (PCOS) remains unclear. Methods: We examined whether pretreatment (daily from 2 hours before PCOS induction) with KRG extract in water (KRGE; 75 and 150 mg/kg/day, p.o.) could exert a favorable effect in a dehydroepian-drosterone (DHEA)-induced PCOS rat model. Results: Pretreatment with KRGE significantly inhibited the elevation of body and ovary weights, the increase in number and size of ovarian cysts, and the elevation of serum testosterone and estradiol levels induced by DHEA. Pretreatment with KRGE also inhibited macrophage infiltration and enhanced mRNA expression levels of chemokines [interleukin (IL)-8, monocyte chemoattractant protein-1), proinflammatory cytokines (IL-1β, IL-6), and inducible nitric oxide synthase in ovaries induced by DHEA. It also prevented the reduction in mRNA expression of growth factors (epidermal growth factor, transforming growth factor-beta (EGF, TGF-β)) related to inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell pathway and stimulation of the nuclear factor erythroid-derived 2-related factor 2 pathway. Interestingly, KRGE or representative ginsenosides (Rb1, Rg1, and Rg3(s)) inhibited the activity of inflammatory enzymes cyclooxygenase-2 and iNOS, cytosolic p-IκB, and nuclear p-nuclear factor kappa-light-chain-enhancer of activated B in lipopolysaccharide-induced RAW264.7 cells, whereas they increased nuclear factor erythroid-derived 2-related factor 2 nuclear translocation. Conclusion: These results provide that KRGE could prevent DHEA-induced PCOS via antiinflammatory and antioxidant activities. Thus, KRGE may be used in preventive and therapeutic strategies for PCOS-like symptoms.