DOI QR코드

DOI QR Code

Role of NFAT5 in Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells

인체 지방 유래 중간엽 줄기세포의 골분화 조절 기전에서 NFAT5의 역할

  • Lee, Sun Young (Department of Physiology, School of Medicine, Pusan National University) ;
  • Yang, Ji won (Department of Physiology, School of Medicine, Pusan National University) ;
  • Jung, Jin Sup (Department of Physiology, School of Medicine, Pusan National University)
  • 이선영 (부산대학교 의학전문대학원 생리학교실) ;
  • 양지원 (부산대학교 의학전문대학원 생리학교실) ;
  • 정진섭 (부산대학교 의학전문대학원 생리학교실)
  • Received : 2013.01.23
  • Accepted : 2013.04.17
  • Published : 2013.04.30

Abstract

Human adipose tissue-derived mesenchymal stem cells (hADSCs) have therapeutic potential, including the ability to self-renew and differentiate into multiple lineages. Understanding of molecular mechanisms of stem cell differentiation is important for improving the therapeutic efficacies of stem cell transplantation. In this study, we determined the role of nuclear factor of activated T cells (NFAT5) in the osteogenic differentiation of hADSCs. The down-regulation of NFAT5 expression by the transfection of a specific siRNA significantly inhibited osteogenic differentiation of hADSCs and decreased the activity of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) promoter without affecting their proliferation and adipogenic differentiation. The inhibition of NFAT5 expression inhibited the basal and Tumor Necrosis Factor ${\alpha}$ (TNF-${\alpha}$) induced activation of NF-${\kappa}B$, but it did not affect TNF-${\alpha}$-induced degradation of the $I{\kappa}B$ protein. These findings indicate that NFAT5 plays an important role in the osteogenic differentiation of hADSCs through the modulation of the NF-${\kappa}B$ pathway.

인체 중간엽 줄기세포는 다양한 세포로의 분화 및 자가증식 할 수 있는 능력뿐만 아니라 질병치료에 대한 치료적 잠재력을 가지고 있다. 줄기세포 분화의 분자 기작에 대한 이해는 줄기세포 이식의 치료 효능을 향상시킨다. 본 연구에는 인체 중간엽 줄기세포의 골분화에서 NFAT5의 역할을 밝혔다. 특이적 siRNA의 transfection으로 인한 NFAT5의 억제는 인체 중간엽 줄기세포의 골분화를 현저히 감소시켰으며, NF-${\kappa}B$ promoter 활성화 또한 세포의 증식이나 지방 세포로의 분화에 영향 없이 감소 시켰다. NFAT5의 발현 억제는 기본적으로 유도되는 NF-${\kappa}B$의 활성화와 TNF-${\alpha}$에 의해서 유도되는 NF-${\kappa}B$의 활성화를 감소시켰으나, TNF-${\alpha}$에 의해서 유도되는 NF-${\kappa}B$의 분해에는 아무런 영향을 주지 않았다. 이번 연구를 통해 NFAT5가 NF-${\kappa}B$ 경로를 조절함으로써 인체 중간엽 줄기 세포의 골분화에 아주 중요한 역할을 하는 것을 확인 할 수 있었다.

Keywords

References

  1. Bocker, W., Docheva, D., Prall, W. C., Egea, V., Pappou, E., Rossmann, O., Popov, C., Mutschler, W., Ries, C. and Schieker, M. 2008. IKK-2 is required for TNF-alpha-induced invasion and proliferation of human mesenchymal stem cells. J Mol Med (Berl) 86, 1183-1192. https://doi.org/10.1007/s00109-008-0378-3
  2. Boone, C., Mourot, J., Grégoire, F. and Remacle, C. 2000. The adipose conversion process: regulation by extracellular and intracellular factors. Reprod Nutr Dev 40, 325-358. https://doi.org/10.1051/rnd:2000103
  3. Burg, M., Ferraris, J. and Dmitrieva, M. 2007. Cellular response to hypertonic stress. Physiol Rev 87, 1441-1474. https://doi.org/10.1152/physrev.00056.2006
  4. Cho, H. H., Shin, K. K., Kim. Y. J., Song, J. S., Kim, J. M., Bae, Y. C., Kim, C. D. and Jung, J. S. 2010. NF-kappaB activation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZ expression. J Cell Physiol 223, 168-177.
  5. De Ugarte, D. A., Morizono, K., Elbarbary, A., Alfonso, Z., Zuk, P. A., Zhu, M., Dragoo, J. L., Ashjian, P., Thomas, B., Benhaim, P., Chen, I., Fraser, J. and Hedrick, M. H. 2003. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174, 101-109. https://doi.org/10.1159/000071150
  6. Ferrari, G., Cusella-De A. G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G. and Mavilio, F. 1998. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528-1530. https://doi.org/10.1126/science.279.5356.1528
  7. Halvorsen, Y. C., Wilkison, W. O. and Gimble, J. M. 2000. Adipose-derived stromal cells-their utility and potential in bone formation. Int J Obes Relat Metab Disord 24(Suppl 4), S41-44.
  8. Halvorsen, Y. D., Franklin, D., Bond, A. L., Hitt, D. C., Auchter, C., Boskey, A. L., Paschalis, E. P., Wilkison, W. O. and Gimble, J. M. 2001. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue- derived stromal cells. Tissue Eng 7, 729-741. https://doi.org/10.1089/107632701753337681
  9. Halterman, J. A., Kwon, H. M., Zargham, R., Bortz, P. D. and Wamhoff, B. R. 2011. Nuclear factor of activated T cells 5 regulates vascular smooth muscle cell phenotypic modulation. Arterioscler Thromb Vasc Biol 31, 2287-2296. https://doi.org/10.1161/ATVBAHA.111.232165
  10. Hayden, M. S. and Ghosh, S. 2008. Shared Principles in NF-${\kappa}B$ signaling. Cell 132, 344-362. https://doi.org/10.1016/j.cell.2008.01.020
  11. Hong, J.H., Hwang, E. S., McManus, M. T., Amsterdam, A., Tian, Y., Kalmukova, R., Mueller, E., Benjamin, T., Spiegelman, B. M., Sharp, P. A., Hopkins, N. and Yaffe, M. B. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309, 1074-1078.
  12. Jang, E. J., Jeong, H., Han, K. H., Kwon, H. M., Hong, J. H. and Hwang, E. S. TAZ suppresses NFAT5 activity through tyrosine phosphorylation. Mol Biol Cell 32, 4925-4932.
  13. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortizgonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A. and Verfaillie, C. M. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41-49. https://doi.org/10.1038/nature00870
  14. Jun, Y. J. 2008. Recent development trend and prospects of adipose-derived stem cells on nerve regeneration. Tissue Engineering and Regenerative Medicine 5, 51-56.
  15. Kim, J. A., Jeon, U. S., Kwon M. S., Lim, S. W. and Kwon, H. M. 2007. Transcriptional activator TonE-binding protein in cellular protection and differentiation. Methods Enzymol 428, 253-267. https://doi.org/10.1016/S0076-6879(07)28014-0
  16. Kuznetsov, S. A., Friedenstein, A. J. and Robey, P. G. 1997. Factors required for bone marrow stromal fibroblast colony formation in vivo. Br J Haematol 97, 561-570. https://doi.org/10.1046/j.1365-2141.1997.902904.x
  17. Leeman, J. R. and Gilmore, T. D. 2008. Alternative splicing in the NF-kappaB signaling pathway. Gene 423, 97-107. https://doi.org/10.1016/j.gene.2008.07.015
  18. Kwon, M. S., Lim, S. W. and Kwon, H. M. 2009. Hypertonic stress in the kidney: a necessary evil. Physiology 24, 186-191. https://doi.org/10.1152/physiol.00005.2009
  19. Miyakawa, H., Woo, S. K., Dahl, S. C., Handler, J. S. and Kwon, H. M. 1999. Tonicity-responsive enhancer binding protein, a Rel-like protein that stimulates transcription in response to hypertonicity. PNAS 96, 2538-2542. https://doi.org/10.1073/pnas.96.5.2538
  20. Natoli, G. and Chiocca, S. 2008. Nuclear ubiquitin ligases, NF-kappaB degradation, and the control of inflammation. Sci Signal 1, pe1. https://doi.org/10.1126/stke.11pe1
  21. O'Connor, R. S., Mills, S. T., Jones, K. A., Ho, S. N. and Pavlath, G. K. 2006. A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. J Cell Sci 120, 149-159. https://doi.org/10.1242/jcs.03307
  22. Ogawa, R., Mizuno, H., Watanabe, A., Migita, M., Shimada, T. and Hyakusoku, H. 2004. Osteogenic and chondrogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice. Biochem Biophys Res Commun 313, 871-877. https://doi.org/10.1016/j.bbrc.2003.12.017
  23. Peng, S., Zhou, G., Lu, K. D., Cheung, K. M., Li, Z., Lam, W. M,, Zhou, Z. and Lu, W. W. 2009. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell Physiol Biochem 23, 165-174. https://doi.org/10.1159/000204105
  24. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A, Simonetti, D. W., Craig, S. and Marshak, D. R. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147. https://doi.org/10.1126/science.284.5411.143
  25. Prockop, D. J. 1997. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71-74. https://doi.org/10.1126/science.276.5309.71
  26. Roth, I., Leroy, V., Kwon, H. M., Martin, P. Y., Feraille, E. and Hasler, U. 2010. Osmoprotective transcription factor NFAT5/TonEBP modulates nuclear factor-${\kappa}B$ activity. Mol Biol Cell 21, 3459-3474. https://doi.org/10.1091/mbc.E10-02-0133
  27. Strem, B. A., Hicok, K. C., Zhu, M., Wulur, I., Alfonso, Z., Schreiber, R. E., Fraser, J. K. and Hedrick, M. H. 2005. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 54, 132-141. https://doi.org/10.2302/kjm.54.132
  28. Woodbury, D., Schwarz, E. J., Prockop, D. J. and Black, I. B. 2000. Adult rat and human bone marrow stromal cells differentiate in to neurons. J Neurosci Res 61, 364-370. https://doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
  29. Yang, Y. I., Kim, H. I., Seo, J. Y. and Choi, M. Y. 2007. Adult stem cells as cell therapeutics of angiogenesis. Tissue Eng Regen Med 4, 484-489.
  30. Yoon, H. J., You, S., Yoo, S. A., Kim, N. H., Kwon, H. M., Yoon, C. H., Cho, C. S., Hwang, D. and Kim, W. U. 2011. NFAT5 is a critical regulator of inflammatory arthritis. Arthritis Rheum 63, 1843-1852. https://doi.org/10.1002/art.30229
  31. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P. and Hedric, M. H. 2002. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13, 4279-4295. https://doi.org/10.1091/mbc.E02-02-0105
  32. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P. and Hedrick, M. H. 2001. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7, 211-228. https://doi.org/10.1089/107632701300062859

Cited by

  1. Cell Therapy Products in Menopausal Medicine vol.22, pp.2, 2016, https://doi.org/10.6118/jmm.2016.22.2.71