• 제목/요약/키워드: nozzle structural analysis

검색결과 67건 처리시간 0.029초

내부압력, 열하중 및 외부하중을 고려한 노즐의 2차원 및 3차원 해석 비교 (Two and Three-Dimensional Analysis Comparison of Nozzles due to Internal Pressure, Thermal Load and External Load)

  • 윤효섭;김종민;맹철수;김현민;이대희
    • 한국전산구조공학회논문집
    • /
    • 제28권3호
    • /
    • pp.283-291
    • /
    • 2015
  • 본 논문에서는 원통형 쉘에 부착된 노즐의 구조 건전성평가를 수행하고 그 결과를 비교하기 위해 2차원(2D)과 3차원(3D) 해석이 수행되었다. 현재 원자력 발전소에서 사용되는 3개의 노즐을 구조 건전성평가를 위해 선정하였고, 각각 노즐은 내부압력, 온도변화 및 외부하중을 받는다. 내부압력에 대한 2D 해석은 1.5이상의 계수 값을 이용하거나 응력집중 계수를 적용하여야 하고, 온도변화에 대한 2D와 3D 해석결과는 피복재의 유무와 상관없이 서로 거의 비슷하며, 외부하중에 대한 WRC Bulletin 297에 의한 해석결과는 3D 해석결과보다 더 보수적임을 확인할 수 있었다.

ASME Boiler & Pressure Vessel Code에 따른 배열회수보일러 기수분리기의 피로 평가 (Fatigue Evaluation of Steam Separators of Heat Recovery Steam Generators According to the ASME Boiler and Pressure Vessel Code)

  • 이부윤
    • 한국기계가공학회지
    • /
    • 제17권4호
    • /
    • pp.150-159
    • /
    • 2018
  • The present research deals with a finite element analysis and fatigue evaluation of a steam separator of a high-pressure evaporator for the Heat Recovery Steam Generator (HRSG). The fatigue during the expected life of the HRSG was evaluated according to the ASME Boiler and Pressure Vessel Code Section VIII Division 2 (ASME Code). First, based on the eight transient operating conditions prescribed for the HRSG, temperature distribution of the steam separator was analyzed by a transient thermal analysis. Results of the thermal analysis were used as a thermal load for the structural analysis and used to determine the mean cycle temperature. Next, a structural analysis for the transient conditions was carried out with the thermal load, steam pressure, and nozzle load. The maximum stress location was found to be the riser nozzle bore, and hence fatigue was evaluated at that location, as per ASME Code. As a result, the cumulative usage factor was calculated as 0.00072 (much less than 1). In conclusion, the steam separator was found to be safe from fatigue failure during the expected life.

원자력 발전소용 입형 사류펌프의 동적해석에 관한 연구 (A Study on Dynamic Analysis of Vertical Mixed-Flow Pump for Nuclear Power Plants)

  • 서영수;임우섭;정희택
    • 동력기계공학회지
    • /
    • 제10권4호
    • /
    • pp.71-77
    • /
    • 2006
  • This study introduces the seismic qualification of safety related equipments for nuclear power plants to verify the possibility of resonance in regard to the operating speed and the structural integrity due to external piping nozzle loads as well as seismic dynamic loads using El-Centro earthquake, which was occurred in the 1940's previously. As a first step, it is necessary to investigate the natural frequency of the vertical mixed flow pump in order to determine whether static or dynamic equipment comparing with seismic cut-off frequency, 33hz. Also the normal mode analysis was carried out with the introduction of seismic redesign straint at the middle of vertical pump to increase the natural frequency. In terms of structural integrity, the application of static analysis with normal, upset and faulted nozzle loads event was presented for the comparison of material allowable stress. Also the dynamic analysis was performed to show the design adequacy through the application to the case of El-Centro earthquake.

  • PDF

원자로 상부헤드 관통노즐 균열에 대한 원인분석 및 건전성 평가 (Root Cause Analysis and Structural Integrity Evaluation for a Crack in a Reactor Vessel Upper Head Penetration Nozzle)

  • 이경수;이성호;이정석;이재곤;이승건
    • 한국압력기기공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.56-61
    • /
    • 2013
  • This paper presents the results of integrity assessment for the cracks happened in reactor vessel upper head penetration nozzles. The crack morphology for a boat sample from crack area was analyzed through microscope. The stress condition including weld residual stress around crack was analyzed using finite element analysis. From the results of crack morphology and stress condition, the crack was concluded as primary water stress corrosion cracking. The integrity of the cracked nozzle was assessed by the methodology provided in ASME Section XI. According to the assessment results, the remaining life of the cracked nozzle was 1.43 yrs. and the plant decided to repair it.

액체로켓 연소기 노즐의 벌징 공정 (Bulging Process of Liquid Rocket Combustion Chamber Nozzle)

  • 류철성;최환석
    • 한국항공우주학회지
    • /
    • 제36권3호
    • /
    • pp.271-278
    • /
    • 2008
  • 액체로켓 연소기 재생냉각 챔버 제작에 필수적인 노즐의 벌징 공정에 대한 연구를 수행하였다. 벌징 공정에 사용되는 재료의 기계적인 특성은 재료시험을 통하여 획득하였다. 벌징노즐의 벌징 후 형상 변화는 변형해석을 통하여 확인하였다. 벌징 공정 및 변형해석의 검증은 벌징노즐 시편을 제작하고, 벌징 시험을 수행하여 확인하였다. 노즐 벌징 수행 결과 총 7개의 시제 중 1개의 시제에서 소재에 네킹이 발생하여 파손되었다. 벌징 공정 중에 발생된 네킹의 원인 분석은 재료의 조직분석을 통하여 수행하였다. 조직분석 결과 재료의 그레인 사이즈가 네킹 발생에 큰 영향을 미침을 확인하였다.

Urea-SCR 단홀 Injector 노즐형상 변화에 따른 비정상유동특성의 해석적 연구 (Analytical Study on Unsteady Flow Characteristics of Urea-SCR Single Hole Injector depend on Nozzle Shape Change)

  • 황준환;박성영
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.105-113
    • /
    • 2019
  • In this paper, a study of Urea-SCR System for Dosing Injector for responding to enhanced environmental regulations has been conducted. There is a limit to the experimental approach due to the structural characteristics of the injector. In order to overcome this problem, The analysis was performed assuming unsteady turbulent flow through computational fluid analysis and the internal flow characteristics of the injector were analyzed. By changing the nozzle shape of the injector, the performance factors of the swirl injector by shape were selected and compared. The design parameters were modified by changing the diameter of the nozzle at a constant ratio compared to the base model. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. The Conv. model to which the taper was applied showed the dominance in mass flow rate, discharge coefficient and swirl because of the smooth fluid flow by shape. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. As a result of the comparison coefficient derivation with those performance parameters for comparing the performance of the model-specific injector, the Conv-140 model with the nozzle diameter expanded by 140% showed the best value of the comparison coefficient.

탁상용 소형 사출 성형기 개발 (Developed Compact Injection Molding Machine for Desktop)

  • 이병호;신동화
    • 한국산업융합학회 논문집
    • /
    • 제21권5호
    • /
    • pp.257-263
    • /
    • 2018
  • It is a small injection molding machine for table top considering the material heating mechanism and the design and structure stability by securing the mechanism that compresses the inside of the material heating tube by using the electric actuator and by providing space between the body and the material heating tube to reduce heat loss Develop body. An electric actuator suitable for applying pressure to the inside of a material heating tube is a mechanical system composed of a rigid structure. Since a large force is repeatedly applied to the electric actuator and the push rod, the interaction between the moving parts and the dynamic Maximum stress through analysis and prediction of fatigue life of critical parts The pushrod reflects the structural analysis results of the electric actuator and the push rod, and pushes the inside of the material heating tube by the push rod to inject the molten material from the nozzle into the mold. The pushrod operates by the operation of the electric actuator. The material heated by the coil heater is ejected through the nozzle by the pressure of the material heating tube, and the material heating tube and the nozzle are also lowered at the same time as the push rod is lowered, so that the material is closely adhered to the mold. We want to study the completion of the injection.

연소기 노즐에서의 열전달 특성 연구 (Study on Heat Transfer Characteristic in Combustor Nozzle)

  • 남궁혁준;김화중;한풍규;이경훈;김영수;정해승;이상연
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.34-40
    • /
    • 2006
  • 연소기 노즐은 고온 고압의 연소가스를 화학에너지에서 운동에너지로 변환시켜 추력을 발생시킨다. 따라서 노즐 내부 벽면은 고온 고압의 연소가스에 노출되며, 특히 노즐 목에서는 최대 열하중을 받는 구간으로서 열구조적으로 안정성을 확보한 냉각 시스템 설계가 이루어져야 한다. 본 연소기 노즐은 수냉 방식으로서 열전달 효율을 높이기 위해 냉각 채널 구조로 되어 있다. 본 연구에서는 연소기 노즐을 위한 냉각 채널 구조의 기본 설계안에 대해 유동 해석을 수행하고 공급 압력 및 유량 변화에 따른 입/출구 사이의 압력 강하량을 예측하여 초기 형상안에 대한 압력 손실 및 설계 유량 공급을 위한 압력 조건에 대해서 평가하고자 하였다. 최종 선정안에 대해서는 내부 열전달 및 유동장 해석을 수행하여 흐름 및 열구조 안정성을 평가하였다.

  • PDF

기계적 편향판 설치위치의 변화에 따른 유동특성에 대한 연구 (A Study on Flow Characteristics with the Installed Location Change of Mechanical Deflector)

  • 김경련;박종호
    • 한국유체기계학회 논문집
    • /
    • 제18권5호
    • /
    • pp.49-53
    • /
    • 2015
  • Thrust vector control is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. TVC of the tapered ramp tabs has the potential to produce both large axial thrust and high lateral force. We have conducted the experimental research and flow analysis of ramp tabs to show the performance and the structural integrity of the TVC. The experiments are carried out with the supersonic cold flow system and the schlieren graph. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

UP-RIGHT 형 진공청소기 흡입구 커버의 구조해석 (A Study on the Structure Analysis of Up-Right Vacuum Cleaner Suction Nozzle Cover)

  • 유동훈;조규종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1074-1077
    • /
    • 2004
  • This investigation is the result of a structural analysis by FEM and test to define the deformation mode of the Up-Right type Vacuum-Cleaner's Nozzle-Cover. In FEM analysis, 3 different conditions were considered separately, such as (1) Compressive force by Belt tension, (2) Friction heat between Belt and shaft and (3) Compressive force combined with heat. Throughout FEM analysis it was found that the deformation was caused by heat and it was proved through a simulation test with a real product.

  • PDF