• Title/Summary/Keyword: novel strains

Search Result 453, Processing Time 0.027 seconds

Optimization of Citric Acid Production by Immobilized Cells of Novel Yeast Isolates

  • Hesham, Abd El-Latif;Mostafa, Yasser S.;AlSharqi, Laila Essa Omar
    • Mycobiology
    • /
    • v.48 no.2
    • /
    • pp.122-132
    • /
    • 2020
  • Citric acid is a commercially valuable organic acid widely used in food, pharmaceutical, and beverage industries. In this study, 260 yeast strains were isolated from soil, bread, juices, and fruits wastes and preliminarily screened using bromocresol green agar plates for their ability to produce organic acids. Overall, 251 yeast isolates showed positive results, with yellow halos surrounding the colonies. Citric acid production by 20 promising isolates was evaluated using both free and immobilized cell techniques. Results showed that citric acid production by immobilized cells (30-40 g/L) was greater than that of freely suspended cells (8-19 g/L). Of the 20 isolates, two (KKU-L42 and KKU-L53) were selected for further analysis based on their citric acid production levels. Immobilized KKU-L42 cells had a higher citric acid production rate (62.5%), while immobilized KKU-L53 cells showed an ~52.2% increase in citric acid production compared with free cells. The two isolates were accurately identified by amplification and sequence analysis of the 26S rRNA gene D1/D2 domain, with GenBank-based sequence comparison confirming that isolates KKU-L42 and KKU-L53 were Candida tropicalis and Pichia kluyveri, respectively. Several factors, including fermentation period, pH, temperature, and carbon and nitrogen source, were optimized for enhanced production of citric acid by both isolates. Maximum production was achieved at fermentation period of 5 days at pH 5.0 with glucose as a carbon source by both isolates. The optimum incubation temperature for citric acid production by C. tropicalis was 32 ℃, with NH4Cl the best nitrogen source, while maximum citric acid by P. kluyveri was observed at 27 ℃ with (NH4)2 SO4 as the nitrogen source. Citric acid production was maintained for about four repeated batches over a period of 20 days. Our results suggest that apple and banana wastes are potential sources of novel yeast strains; C. tropicalis and P. kluyveri which could be used for commercial citric acid production.

Identification of virulence-associated genes of Erwinia amylovora by transposon mutagenesis

  • Seung Yeup Lee;Hyun Gi Kong;In Jeong Kang;Hyeonseok Oh;Hee-Jong Woo;Eunjung Roh
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.2
    • /
    • pp.241-247
    • /
    • 2023
  • Erwinia amylovora , which causes fire blight disease on apple and pear trees, is one of the most important phytopathogens because of its devastating impact. Currently, the only way to effectively control fire blight disease is through the use of antibiotics such as streptomycin, kasugamycin, or oxytetracycline. However, problems with the occurrence of resistant strains due to the overuse of antibiotics are constantly being raised. It is therefore necessary to develop novel disease control methods through an advanced understanding of the pathogenesis mechanism of E. amylovora . To better understand the pathogenesis of E. amylovora , we investigated unknown virulence factors by random mutagenesis and screening. Random mutants were generated by Tn5 transposon insertion, and the pathogenicity of the mutants was assessed by inoculation of the mutants on apple fruitlets. A total of 17 avirulent mutants were found through screening of 960 random mutants. Among them, 14 mutants were already reported as non-pathogenic strains, while three mutants, TS3128_M2899 (ΔSUFU ), TS3128_M2939 (ΔwcaG ), and TS3128_M3747 (ΔrecB ), were not reported. Further study of the association between E. amylovora pathogenicity and these 3 novel genes may provide new insight into the development of control methods for fire blight disease.

Selection of Optimum Expression System for Production of Kringle Fragment of Human Apolipoprotein(a) in Saccharomyces cerevisiae

  • Cha Kwang Hyun;Kim Myoung Dong;Lee Tae Hee;Lim Hyung Kweon;Jung Kyung Hwan;Seo Jin Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.523-527
    • /
    • 2004
  • Recombinant Saccharomyces cerevisiae expression systems were developed to pro­duce a novel human anti-angiogenic protein called LK8, an 86 amino-acid kringle fragment pro­tein with three disulfide linkages. Galactose-inducible LK8 expression plasmid was constructed, and LK8 production levels by four S. cerevisiae strains were compared in order to select an op­timal host strain. S. cerevisiae 2805 was the most efficient among the strains tested. Elevating the LK8 gene copy number through multiple integration using 8-sequences as target sites re­sulted in more than a two-fold increase in the LK8 production level compared with the plasmid­based expression system. The maximum LK8 protein concentration of 25 mg/L was obtained from batch cultivation of the yeast transformant that harbors 16 copies of the LK8 gene. In con­clusion, the strain integrated with the multiple LK8 gene secreted the protein with relatively high yield, although, the increased LK8 gene dosage over 11 copies did not lead to further en­hancement in batch cultivations.

Evaluation of systemic and mucosal immune responses in mice administered with novel recombinant Salmonella vaccines for avian pathogenic Esherichia coli

  • Oh, In-Gyeong;Lee, John Hwa
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.4
    • /
    • pp.199-205
    • /
    • 2013
  • Avian pathogenic Escherichia coli (APEC) is a causative agent for a number of extra intestinal diseases and account for significant losses to the poultry industry. Since protective immunity against APEC is largely directed to virulence antigens, we have individually expressed four different viulence antigens, papA, papG, IutA, and CS31A, using an attenuated Salmonella Typhimurium and a plasmid pBB244. Following oral immunization of mice with combination of two or four of these strains, serum IgG and mucosal IgA responses were elicited against each antigen represented in the mixture. The antigen-specific mucosal IgA responses were significantly higher in the group of mice immunized with the heat-labile Escherichia coli enterotoxin B subunit (LTB) strain than those in the group of mice immunized without the LTB strain. While, there was no significant difference between these two groups in antigen-specific serum IgG responses. The results showed that LTB could act as mucosal immune adjuvant. To assess the nature of immunity, the distribution of antigen-specific IgG isotypes was analyzed. All groups promoted Th1-type immunity as determined by the IgG2a/IgG1 ratio. Thus, our findings provided evidence that immunization with a combination of several vaccine strains is one of the strategies of developing effective vaccines against APEC.

Co-Localization of GABA Shunt Enzymes for the Efficient Production of Gamma-Aminobutyric Acid via GABA Shunt Pathway in Escherichia coli

  • Pham, Van Dung;Somasundaram, Sivachandiran;Park, Si Jae;Lee, Seung Hwan;Hong, Soon Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.710-716
    • /
    • 2016
  • Gamma-aminobutyric acid (GABA) is a non-protein amino acid, which is an important inhibitor of neurotransmission in the human brain. GABA is also used as the precursor of biopolymer Nylon-4 production. In this study, the carbon flux from the tricarboxylic acid cycle was directed to the GABA shunt pathway for the production of GABA from glucose. The GABA shunt enzymes succinate-semialdehyde dehydrogenase (GabD) and GABA aminotransferase (GabT) were co-localized along with the GABA transporter (GadC) by using a synthetic scaffold complex. The co-localized enzyme scaffold complex produced 0.71 g/l of GABA from 10 g/l of glucose. Inactivation of competing metabolic pathways in mutant E. coli strains XBM1 and XBM6 increased GABA production 13% to reach 0.80 g/l GABA by the enzymes co-localized and expressed in the mutant strains. The recombinant E. coli system developed in this study demonstrated the possibility of the pathway of the GABA shunt as a novel GABA production pathway.

In situ reduction of gold nanoparticles in PDMS matrices and applications for large strain sensing

  • Ryu, Donghyeon;Loh, Kenneth J.;Ireland, Robert;Karimzada, Mohammad;Yaghmaie, Frank;Gusman, Andrea M.
    • Smart Structures and Systems
    • /
    • v.8 no.5
    • /
    • pp.471-486
    • /
    • 2011
  • Various types of strain sensors have been developed and widely used in the field for monitoring the mechanical deformation of structures. However, conventional strain sensors are not suited for measuring large strains associated with impact damage and local crack propagation. In addition, strain sensors are resistive-type transducers, which mean that the sensors require an external electrical or power source. In this study, a gold nanoparticle (GNP)-based polymer composite is proposed for large strain sensing. Fabrication of the composites relies on a novel and simple in situ GNP reduction technique that is performed directly within the elastomeric poly(dimethyl siloxane) (PDMS) matrix. First, the reducing and stabilizing capacities of PDMS constituents and mixtures are evaluated via visual observation, ultraviolet-visible (UV-Vis) spectroscopy, and transmission electron microscopy. The large strain sensing capacity of the GNP-PDMS thin film is then validated by correlating changes in thin film optical properties (e.g., maximum UV-Vis light absorption) with applied tensile strains. Also, the composite's strain sensing performance (e.g., sensitivity and sensing range) is also characterized with respect to gold chloride concentrations within the PDMS mixture.

Characterization of Bacillus thuringiensis Isolated in Granary Dusts (저곡창고에서 분리된 Bacilus thuringiensis의 특성조사)

  • 김호산;박현우;이대원;유용만;유용만;강석권
    • Korean journal of applied entomology
    • /
    • v.34 no.3
    • /
    • pp.243-248
    • /
    • 1995
  • In order to isolate naturally occurring novel Bacillus thuringiensis strains, we investigated the distribution of B. thuringiensis from granary which exist in Kyong-gi province, Korea. A total of 146 strains of B. thuringiensis producing spore and crystal wre isolated. The toxicity of B. thuringiensis isolates was examined against lepidopteran larvae (Bombyx mori), dipteran larvae (Culex pipiens) and coleopteran larvae (Sitophilus oryzae.), respectively. The results showed that a large number of B. thuringiensis isolates from granary dusts were isolated and most isolates wer toxic to lepidopterous larvae. Also, non-toxic B. thuringiensis isolate was common. In order to isolate many B. thuringiensis, therefore, it suggested that granary is favorable locality.

  • PDF

A Cyan Fluorescent Protein Gene (cfp)-Transgenic Marine Medaka Oryzias dancena with Potential Ornamental Applications

  • Vu, Nguyen Thanh;Cho, Young Sun;Lee, Sang Yoon;Kim, Dong Soo;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.479-486
    • /
    • 2014
  • To evaluate their potential utility as an ornamental organism, novel transgenic marine medaka Oryzias dancena strains with a highly vivid fluorescent phenotype were established through transgenesis of a cyan fluorescent protein gene (cfp) driven by the endogenous fast skeletal myosin light chain 2 gene (mlc2f) promoter. The transgenic marine medaka strains possessed multiple copies of transgene integrants and passed their fluorescent transgenes successfully to subsequent generations. Transgenic expression in skeletal muscles at both the mRNA and phenotypic levels was, overall, dependent upon transgene copy numbers. In the external phenotype, an authentic fluorescent color was dominant in the skeletal muscles of the transgenic fish and clearly visible to the unaided eye. The phenotypic fluorescent color presented differentially in response to different light-irradiation sources; the transgenics displayed a yellow-green color under normal daylight or white room light conditions, a strong green-glowing fluorescence under ultraviolet light, and a cyan-like fluorescence under blue light from a light-emitting diode.

Antimicrobial Activity of the Cell Organelles, Lysosomes, Isolated from Egg White

  • Yoon, Ji-Hee;Park, Jae-Min;Kim, Ki-Ju;Kim, Yang-Hoon;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1364-1368
    • /
    • 2009
  • Lysosomes, as a cell organelle type, are safe biological control agents that may be possible replacements for chemical antimicrobial agents because they are simply isolated from egg white. In this study, it was found that the lysosomes isolated from egg white exhibited pH-dependent antimicrobial activity, with the optimal activity found at pH 6.0. The efficiency of lysosomes in inhibiting bacterial growth and activity was evaluated over a 12-h treatment period. Seven different microorganisms were used as bacterial strains, and the lysosomes showed a significant antimicrobial effect against all strains. In addition, the antimicrobial activity was maintained for 100 days, and there did not appear to be any resistance of E. coli to the lysosomal activity up to the eighth culture. However, the lysosomes did not affect the viability of mammalian cells, suggesting the biocompatibility of lysosomes. These highly effective lysosomes have a bright future in the application of novel antimicrobial sources as a cell organelle type.

Identification and Characteristics of Extreme Halophilic bacteria Isolated from a Saltern in Korea (한국 염전으로 부터 분리한 고도 호염성 세균의 동정 및 특성)

  • Bae, Moo;Lee, Jeong-Im
    • Korean Journal of Microbiology
    • /
    • v.29 no.1
    • /
    • pp.56-62
    • /
    • 1991
  • Extremely halophilic bacteria isolated from salterns at Mado, Kyunggido, Korea, were identified and investigated on their salt requirements. The results have shown that six strains were identified to be belonged to the genus Halobacterium and three strains identified as the fenus Halococcus. Among them, the optimal NaCl concentration for growth of Halobacterium sp. EH10 was at 4.2M and no growth occurs below 2.0M NaCl. The strain, EH10, is nonmotile and showed acid production from glucose, fructose and maltose while H. salinarum is motile and does not produce acid from any carbohydrates. On the other hand, the strain EH10 does not utilize readily glucose while a number of sugars are readily utilized for growth with acid production by H. saccharovorum. Thus, the isolate, EH10, was classified into the genus Halobacterium and could be a novel species of the genus by its main morphological and physiological features including G+C content. The optimal temperature for growth of the isolate, EH10, was 50.deg.C. But this strain did not grow when NaCl was replaced with KCl.

  • PDF