• 제목/요약/키워드: novel protein

검색결과 1,731건 처리시간 0.025초

cDNA Sequence and mRNA Expression of a Novel Peroxiredoxin from the Firefly, pyrocoelia rufa

  • Jin, Byung-Rae;Lee, Kwang-Sik;Kim, Seong-Ryul;Sohn, Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제4권2호
    • /
    • pp.101-107
    • /
    • 2002
  • We describe here the cDNA sequence and mRNA expression of a novel family of the antioxidant protein, peroxiredoxin, from the firefly, Pyracoetia ruin. The 555 bp cDNA sequence codes for a 185 amino acid protein with a calculated molecular mass of approximately 21 kDa. The deduced protein of P. rufa peroxiredoxin gene contains two conserved cysteine residues. Alignment of the deduced protein of P. rufa peroxiredoxin gene showed 71.1% protein sequenceidentity to known insect Drosophila melanogaster peroxiredoxin. Northern blot analysis revealed that the P. rufa peroxiredoxin is specifically expressed in the fat body of P. rufa larvae.

A Novel Endo-β-1,4-xylanase from Acanthophysium sp. KMF001, a Wood Rotting Fungus

  • Yoon, Sae-Min;Kim, Yeong-Suk;Kim, Young-Kyoon;Kim, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제46권6호
    • /
    • pp.670-680
    • /
    • 2018
  • Acanthophysium sp. KMF001, a wood rotting fungus, produces a strong crude enzyme complex that efficiently produces simple sugars from wood. The transcriptomic analysis of Acanthophysium sp. KMF001 identified 14 genes for putative glycoside hydrolases. Among them, isotig01043 was expressed heterogeneously in Escherichia coli BL21(DE3), and the expressed protein exhibited an endo-${\beta}$-1,4-xylanase activity which showed the optimum reaction at pH 5.0 and $30^{\circ}C$. The enzyme kinetic values of $K_m$ and $V_{max}$ were 25.92 mg/ml and $0.628{\mu}mole/mg/ml$, respectively. The enzymatic characteristics of the expressed xylanase showed a typical fungal xylanase. However, the bioinformatics analysis suggested that the protein encoded by isotig01043 was a novel xylanase based on a low identity when it was compared with the closest protein in the NCBI database and a similar protein domain with GH16_fungal_Lam16A_glucanase, which had not been earlier suggested as a xylanase.

Ultra-thin Film Assembly of a Novel Biomaterial Containing Protein and Functionalized Polymer for Sensor Application

  • 임정옥;손병기;허증수
    • 센서학회지
    • /
    • 제4권4호
    • /
    • pp.81-87
    • /
    • 1995
  • A novel biomaterial capable of incorporating biotinylated biomolecule has been synthesized. Our strategy is to biotinylate one-dimensional electroactive polymers and use a bridging streptavidin protein on Langmuir-Blodgett (LB) organized films. These copolymers are derivatized with long alkyl chains and biotin moieties to bind, respectively, to the hydrophobic surface and the biotinylated species, through the biotin and streptavidin complexation. We utilize the polymer assembly approach to attach a signal transducing biomolecule biotinylated phycoerythrin (B-PE) into this novel biomaterial by binding the unoccupied biotin binding sites on the bound streptavidin (4 sites total). The pressure-area isotherm of the protein injected monolayer showed area expansion. A characteristic fluorescent emission peak at 576nm was detected from the monolayer transferred onto a solid substrate. These observations demonstrated the promise of the organized thin polymer assemblies for their application to the sensor system.

  • PDF

A novel tricyclic derivative for PET imaging of the translocator protein

  • Kwon, Young-Do;Kim, Hee-Kwon
    • 대한방사성의약품학회지
    • /
    • 제2권1호
    • /
    • pp.37-42
    • /
    • 2016
  • The translocator protein (TSPO) has attracted scientist's attention for Positron Emission Tomography (PET) imaging due to correlation with brain cancer, stroke, and neurodegeneration. Recently, GE-180, a novel tricyclic derivative has been developed as a new high affinity agent for the TSPO and evaluated to confirm a possibility for the TSPO ligand. In this highlight review, several studies for the novel TSPO radiotracer are described.

A novel method for predicting protein subcellular localization based on pseudo amino acid composition

  • Ma, Junwei;Gu, Hong
    • BMB Reports
    • /
    • 제43권10호
    • /
    • pp.670-676
    • /
    • 2010
  • In this paper, a novel approach, ELM-PCA, is introduced for the first time to predict protein subcellular localization. Firstly, Protein Samples are represented by the pseudo amino acid composition (PseAAC). Secondly, the principal component analysis (PCA) is employed to extract essential features. Finally, the Elman Recurrent Neural Network (RNN) is used as a classifier to identify the protein sequences. The results demonstrate that the proposed approach is effective and practical.

Identification of Protein Phosphatase 4 Inhibitory Protein That Plays an Indispensable Role in DNA Damage Response

  • Park, Jaehong;Lee, Jihye;Lee, Dong-Hyun
    • Molecules and Cells
    • /
    • 제42권7호
    • /
    • pp.546-556
    • /
    • 2019
  • Protein phosphatase 4 (PP4) is a crucial protein complex that plays an important role in DNA damage response (DDR), including DNA repair, cell cycle arrest and apoptosis. Despite the significance of PP4, the mechanism by which PP4 is regulated remains to be elucidated. Here, we identified a novel PP4 inhibitor, protein phosphatase 4 inhibitory protein (PP4IP) and elucidated its cellular functions. PP4IP-knockout cells were generated using the CRISPR/Cas9 system, and the phosphorylation status of PP4 substrates (H2AX, KAP1, and RPA2) was analyzed. Then we investigated that how PP4IP affects the cellular functions of PP4 by immunoprecipitation, immunofluorescence, and DNA double-strand break (DSB) repair assays. PP4IP interacts with PP4 complex, which is affected by DNA damage and cell cycle progression and decreases the dephosphorylational activity of PP4. Both overexpression and depletion of PP4IP impairs DSB repairs and sensitizes cells to genotoxic stress, suggesting timely inhibition of PP4 to be indispensable for cells in responding to DNA damage. Our results identify a novel inhibitor of PP4 that inhibits PP4-mediated cellular functions and establish the physiological importance of this regulation. In addition, PP4IP might be developed as potential therapeutic reagents for targeting tumors particularly with high level of PP4C expression.

Isolation and Characterization of Strain of Bacillus thuringiensis subsp. kenyae Containing Two Novel cry1-Type Toxin Genes

  • Choi, Jae-Young;Li, Ming Shun;Shim, Hee-Jin;Roh, Jong-Yul;Woo, Soo-Song;Jin, Byung-Rae;Boo, Kyung-Saeng;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권9호
    • /
    • pp.1498-1503
    • /
    • 2007
  • To identify novel crystal proteins, Bacillus thuringiensis 2385-1 was isolated from Korean soil samples and characterized. The H-serotype of 2385-1 was identical to that of subsp. kenyae (H4a4c), and its crystal toxin was bipyramidal-shaped. However, 2385-1 showed a much higher toxicity towards Plutella xylostella and Spodoptera exigua larvae than subsp. kenyae. In addition, the crystal protein profile and plasmid DNA pattern of 2385-1 differed from those of subsp. kenyae. To verify the crystal protein gene types of 2385-1, a PCR-RFLP analysis was performed, and the results revealed that 2385-1 contained two novel cry1-type crystal protein genes, cryl-5 and cry1-12, in addition to the crylJal gene. The deduced amino acid sequences of cryl-5 and cry1-12 showed a 97.9% and 75.7% sequence similarity with the CrylAb and CrylJa crystal proteins, respectively. Among the novel crystal proteins, Cry1-5 showed a high toxicity towards P. xylostella and S. exigua larvae. In conclusion, B. thuringiensis 2385-1 is a new isolate in terms of its gene types, and should be a promising source for an insecticide to control lepidopteran larvae.

Construction of a Novel Recombinant Bombyx mori Nuclear Polyhedrosis Virus Producing the Fluorescent Polyhedra

  • Kang, Seok-Woo;Yun, Eun-Young;Woo, Soo-Dong;Goo, Tae-Won;Hwang, Jae-Sam
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제3권1호
    • /
    • pp.75-81
    • /
    • 2001
  • We have constructed a novel recombinant Bombyx mori nuclear polyhedrosis virus (BmNPV) producing the green fluorescent polyhedra. For the production of the fluorescent polyhedra, partial polyhedrin gene containing KRKK as nuclear localization site from the BmNPV polyhedrin gene and the green fluorescent protein (gfp) gene were introduced under the control of p10 promoter of BmNPV. The recombinant BmNPV was stably produced fluorescent polyhedra in the infected Bm5 cells and the morphology of the fluorescent polyhedra was similar to that of wild-type BmNPV. The fluorescent polyhedra had 32 kDa native polyhedrin and 41 kDa fusion protein. From these data, we have further developed a novel BmNPV p10-based transfer vector producing recombinant polyhedra with foreign gene Product. The novel BmNPV P10-based transfer vector is composed of partial polyhedrin gene, factor Xa, and multiple cloning sites.

  • PDF