References
- Glory, E. and Murphy, R. (2007) Automated subcellular location determination and high-throughput microscopy. Dev. Cell 12, 7-16. https://doi.org/10.1016/j.devcel.2006.12.007
- Chou, K. C. and Shen, H. B. (2008) Cell-ploc: a package of web servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc. 3, 153-162. https://doi.org/10.1038/nprot.2007.494
- Nakashima, H. and Nishikawa, K. (1994) Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies. J. Mol. Biol. 238, 54-61. https://doi.org/10.1006/jmbi.1994.1267
- Chou, K. C. (1995) A novel approach to predicting protein structural classes in a (20-1)-d amino acid composition space. Proteins: Struct. Funct. Genet. 21, 319-344 https://doi.org/10.1002/prot.340210406
- Cedano, J. Aloy, P. Perez-Pons, J. and Querol, E. (1997) Relation between amino acid composition and cellular location of proteins. J. Mol. Biol. 266, 594-600. https://doi.org/10.1006/jmbi.1996.0804
- Shen, H. B. and Chou, K. C. (2005) Predicting protein subnuclear location with optimized evidence-theoretic k-nearest classifier and pseudo amino acid composition. Biochem. Biophys. Res. Commun. 337, 752-756. https://doi.org/10.1016/j.bbrc.2005.09.117
- Lei, Z. and Dai, Y. (2005) An SVM-based system for predicting protein subnuclear localizations. BMC Bioinformatics. 6, 291-298. https://doi.org/10.1186/1471-2105-6-291
- Huang, W. Tung, C., Huang, H. and Ho, S. (2009) Predicting protein subnuclear localization using GO-amino-acid composition features. Biosystems. 98, 73-79. https://doi.org/10.1016/j.biosystems.2009.06.007
- Glory, E. and Murphy, R. F. (2007) Automated subcellular location determination and high-throughput microscopy. Dev. Cell. 12, 7-16. https://doi.org/10.1016/j.devcel.2006.12.007
- Shen, H. B. and Chou, K. C. (2009) A top-down approach to enhance the power of predicting human protein subcellular localization: Hum-mPLoc 2.0. Anal. Biochem. 394, 269-274. https://doi.org/10.1016/j.ab.2009.07.046
- Chou, K. C. and Shen, H. B. (2008) Cell-PLoc: a package of web servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc. 3, 153-162. https://doi.org/10.1038/nprot.2007.494
- Chou, K. C. (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins: Struct. Funct. Genet. 43, 246-255. https://doi.org/10.1002/prot.1035
- Ding, Y. S. and Zhang, T. L. (2008) Using chou’s pseudo amino acid composition to predict subcellular localization of apoptosis proteins: an approach with immune genetic algorithm-based ensemble classifier. Pattern Recognit. Lett. 29, 1887-1892. https://doi.org/10.1016/j.patrec.2008.06.007
- Shen, H. B. and Chou, K. C. (2007) PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition. Anal. Biochem. 373, 386-388. https://doi.org/10.1016/j.ab.2007.10.012
- Zeng, Y., Guo, Y., Xiao, R., Yang, L., Yu, L. and Li, M. (2009) Using the augmented chou's pseudo amino acid composition for predicting protein submitochondria locations based on auto covariance approach. J. Theor. Biol. 259, 366-372. https://doi.org/10.1016/j.jtbi.2009.03.028
- Shen, H. B. and Chou, K. C. (2007) Nuc-PLoc: a new web- server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Eng. Des. Sel. 20, 561-567. https://doi.org/10.1093/protein/gzm057
- Shen, H. B. and Chou, K. C. (2006) Ensemble classifier for protein fold pattern recognition. Bioinformatics. 22, 1717-1722. https://doi.org/10.1093/bioinformatics/btl170
- Jolliffe, I. (2002) Principal component analysis. pp. 29-43, Springer-Verlag, Second Edition, New York, USA
- Elman, J. (1990) Finding structure in time. Cog. Sci. 14, 179-211. https://doi.org/10.1207/s15516709cog1402_1
- Shi, X. H., Liang, Y. C., Lee, H. P., Lin, W. Z., Xu, X. and Lim, S. P. (2004) Improved elman networks and applications for controlling ultrasonic motors. Appl. Artif. Intell. 18, 603-629. https://doi.org/10.1080/08839510490483279
- Dehling, H., Fleurke, S. and Klske, C. (2008) Parking on a random tree. J. Stat. Phys. 133, 151-157. https://doi.org/10.1007/s10955-008-9589-9
- Witten, I. and Frank, E. (2005) Data Mining: practical machine learning tools and techniques. pp.189-283, Morgan Kaufmann Publishers, Second Edition, San Francisco, USA.
- Yousef, M., Jung, S., Kossenkov, A., Showe, L. S. and Showe, M. (2007) Naive Bayes for microRNA target predictions-machine learning for microRNA targets. Bioinformatics. 23, 2987-2992. https://doi.org/10.1093/bioinformatics/btm484
- Bhasin, M., Garg, A. and Raghava, G. P. S. (2005) PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 21, 2522-2524. https://doi.org/10.1093/bioinformatics/bti309
- Gardy, J., Laird, M., Chen, F., Rey, S., Walsh, C., Ester, M. and Brinkman, F. (2005) Psortb v. 2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21, 617-623. https://doi.org/10.1093/bioinformatics/bti057
- Yu, C. S., Lin, C. J. and Hwang, J. K. (2004) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 13, 1402-1406. https://doi.org/10.1110/ps.03479604
- Szafron, D., Lu, P., Greiner, R., Wishart, D., Poulin, B., Eisner, R., Lu, Z., Anvik, J., Macdonell, C., Fyshe, A. and Meeuwis, D. (2004) Proteome Analyst: custom predictions with explanations in a web-based tool for high-throughput proteome annotations. Nucleic Acids. Res. 32, 365-371. https://doi.org/10.1093/nar/gkh485
- Imai, K., Asakawa, N., Tsuji, T., Akazawa, F., Ino, A., Sonoyama, M. and Mitaku, S. (2008) SOSUI-GramN: high performance prediction for sub-cellular localization of proteins in Gram-negative bacteria. Bioinformatics. 2, 417-421.
- Hoffmann, H. (2007) Kernel pca for novelty detection. Pattern Recognition. 40, 863-874. https://doi.org/10.1016/j.patcog.2006.07.009
- Yang J., Gao, X., Zhang D. and Yang, J. Y. (2005) Kernel ICA: an alternative formulation and its application to face recognition. Pattern Recognition 38, 1784-1787. https://doi.org/10.1016/j.patcog.2005.01.023
- Yu, U., Lee, S. H., Kim, Y. J. and Kim, S. (2004) Bioinformatics in the post-genome era. BMB Rep. 37, 75-82. https://doi.org/10.5483/BMBRep.2004.37.1.075
- Ma, J. W., Liu, W. Q. and Gu, H. (2009) Predicting protein subcellular locations for gram-negative bacteria using neural networks ensemble. Proceedings of the 6th Annual IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, pp.114-120, Tennessee, USA.
- Hinton, G. and Salakhutdinov, R. (2006) Reducing the dimensionality of data with neural networks. Science 313, 504-507. https://doi.org/10.1126/science.1127647
- Yeung, K. Y. and Ruzzo, W. L. (2001) Principal component analysis for clustering gene expression data. Bioinformatics. 17, 763-774. https://doi.org/10.1093/bioinformatics/17.9.763
- Bishop, C. (2006) Pattern recognition and machine learning. pp. 225-284. Springer, New York, USA.
Cited by
- Prediction of G-protein coupled receptors and their subfamilies by incorporating various sequence features into Chou's general PseAAC vol.134, 2016, https://doi.org/10.1016/j.cmpb.2016.07.004
- Identification of mycobacterial membrane proteins and their types using over-represented tripeptide compositions vol.77, 2012, https://doi.org/10.1016/j.jprot.2012.09.006
- PREDICTING SUBCHLOROPLAST LOCATIONS OF PROTEINS BASED ON THE GENERAL FORM OF CHOU'S PSEUDO AMINO ACID COMPOSITION: APPROACHED FROM OPTIMAL TRIPEPTIDE COMPOSITION vol.06, pp.02, 2013, https://doi.org/10.1142/S1793524513500034
- Predicting the subcellular localization of mycobacterial proteins by incorporating the optimal tripeptides into the general form of pseudo amino acid composition vol.11, pp.2, 2015, https://doi.org/10.1039/C4MB00645C
- An Efficient Approach for Prediction of Nuclear Receptor and Their Subfamilies Based on Fuzzy k-Nearest Neighbor with Maximum Relevance Minimum Redundancy 2016, https://doi.org/10.1007/s40010-016-0325-6
- Imbalanced Multi-Modal Multi-Label Learning for Subcellular Localization Prediction of Human Proteins with Both Single and Multiple Sites vol.7, pp.6, 2012, https://doi.org/10.1371/journal.pone.0037155
- AcalPred: A Sequence-Based Tool for Discriminating between Acidic and Alkaline Enzymes vol.8, pp.10, 2013, https://doi.org/10.1371/journal.pone.0075726
- An efficient approach for the prediction of ion channels and their subfamilies vol.58, 2015, https://doi.org/10.1016/j.compbiolchem.2015.07.002
- Identifying the Subfamilies of Voltage-Gated Potassium Channels Using Feature Selection Technique vol.15, pp.7, 2014, https://doi.org/10.3390/ijms150712940
- Application of Molecular Methods in the Identification of Ingredients in Chinese Herbal Medicines vol.23, pp.10, 2018, https://doi.org/10.3390/molecules23102728