DOI QR코드

DOI QR Code

Evaluation of chemopreventive effects of Thymoquinone on cell surface glycoconjugates and cytokeratin expression during DMBA induced hamster buccal pouch carcinogenesis

  • Rajkamal, G. (Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University) ;
  • Suresh, K. (Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University) ;
  • Sugunadevi, G. (Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University) ;
  • Vijayaanand, M.A. (Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University) ;
  • Rajalingam, K. (Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University)
  • Received : 2010.03.03
  • Accepted : 2010.05.12
  • Published : 2010.10.31

Abstract

The present study aimed to investigate the membrane stabilizing effect of Thymoquinone (TQ) on cell surface glycoconjugates and cytokeratin expression against DMBA induced hamster buccal pouch carcinogenesis. 0.5% DMBA painting (three times per week) in hamster buccal pouches for 14 weeks resulted in the formation of well developed oral squamous cell carcinoma. We observed 100% tumor formation with marked abnormalities of glycoconjugates status in tumor bearing hamsters as compared to control animals. Oral administration of TQ at a dose of 30 mg/kg body weight, to DMBA painted hamsters on alternate days for 14 weeks, reduced the tumor formation as well as protected the levels of cell surface glycoconjugates in DMBA painted hamsters. The present study thus suggests that TQ has potent chemopreventive efficacy as well as protected the abnormalities on cell surface glycoconjugates during DMBA induced hamster buccal pouch carcinogenesis.

Keywords

References

  1. Tsantoulis, P. K., Kastrinakis, N. G., Tourvas, A. D., Laskaris, G. and Gorgoulis, V. G. (2007) Advances in the biology of oral cancer. Oral. Oncol. 43, 523-534. https://doi.org/10.1016/j.oraloncology.2006.11.010
  2. Pisani, P., Parkin, D. M., Bray, F. and Ferlay, J. (1999) Estimates of the worldwide mortality from twenty-five cancers in 1990. Int. J. Cancer 83, 18-29. https://doi.org/10.1002/(SICI)1097-0215(19990924)83:1<18::AID-IJC5>3.0.CO;2-M
  3. Warnakulasuriya, S., Sutherland, G. and Sclly, C. (2005) Tobacco, oral cancer and treatment of dependence. Oral. Oncol. Rep. 41, 244-260. https://doi.org/10.1016/j.oraloncology.2004.08.010
  4. Parkin, D. M., Bray, F., Ferlay, J. and Pisani P. (2005) Global Cancer Statistics 2002. Cancer J. Clin. 55, 74-108. https://doi.org/10.3322/canjclin.55.2.74
  5. Ogden, G. R. (2005) Alcohol and Oral cancer. Alcohol. Rep. 35, 169-173. https://doi.org/10.1016/j.alcohol.2005.04.002
  6. Ohnishi, M., Yoshimi, N., Kawamori, T., Ino, N., Hirose, Y., Tanaka, T., Yamahara, J., Mlyata, H. and Mori, H. (1997) Inhibitory effects of dietary protocatechuic acid and costunolide on 7,12-dimethylbenz(a)anthracene induced hamster cheek pouch carcinogenesis. Jpn. J. Cancer Res. 88, 111-119. https://doi.org/10.1111/j.1349-7006.1997.tb00355.x
  7. Shklar, G. (1999) Development of experimental oral carcinogenesis and its impact on current oral cancer research. J. Dent. Res. 78, 1768-1772. https://doi.org/10.1177/00220345990780120101
  8. Bhuvaneswari, V., Chandra Mohan, K. V. P. and Nagini, S. (2004) Combination chemoprevention by tomato and garlic in the hamster buccal pouch carcinogenesis model. Nutr. Res. 24, 133-146. https://doi.org/10.1016/j.nutres.2003.11.001
  9. Baxi, B. R., Patel, P. S., Adhvaryu, S. G. and Dayal, P. K. (1991) Usefulness of serum glycoconjugates in precancerous and cancerous diseases of the oral cavity. Cancer Rep. 67, 735-740. https://doi.org/10.1002/1097-0142(19910201)67:3<735::AID-CNCR2820670334>3.0.CO;2-B
  10. Olafvan, T. (2001) The importance of drug-transporting P-glycoproteins in toxicology. Toxicol. Lett. 120, 31-41. https://doi.org/10.1016/S0378-4274(01)00304-6
  11. Laferte, S. and Loh, L. C. (1992) Characterization of a family of structurally related glycoproteins expressing beta- 1-6-branched asparagine-linked oligosaccharides in human colon carcinoma cells. Biochem. J. 283, 193-201. https://doi.org/10.1042/bj2830193
  12. Singhal, A. and Hakomori, S. (1990) Molecular changes in carbohydrate antigens associated with cancer. Bioassays. 12, 223-230. https://doi.org/10.1002/bies.950120506
  13. Vander Velden, L. A., Mahni, J. J., Ramaekers, F. C. and Kuijpers, W. (1999) Expression of intermediate filament proteins in benign lesions of the oral mucosa. Eur. Arch. Otorhinolaryhgol. 256, 514-519. https://doi.org/10.1007/s004050050202
  14. Fillies, T., Jogschles, M., Kleinheinz, J., Brandt, B. and Buerger, H. (2007) Cytokeratin alteration in oral leukoplakia and oral squamous cell carcinoma. Oncology Reports 18, 639-643.
  15. Ogden, G. R., Chisholm, D. M. and Lane, E. B. (1989) The utility of cytokeratin profiles for detecting oral cancer using exfoliative cytology. Br. J. Oral Maxillofac. Surg. 34, 461-466. https://doi.org/10.1016/S0266-4356(96)90109-6
  16. Linder, S., Olofsson, M. H., Herrmann, R. and Ulukaya, E. (2010) Utilization of cytokeratin-based biomarkers for pharmacodynamic studies. Expert. Rev. Mol. Diagn. 10, 353-359. https://doi.org/10.1586/erm.10.14
  17. Wattenberg, L. W. (1985) Chemoprevention of cancer. Cancer Res. 45, 1-8. https://doi.org/10.1016/S0065-230X(08)60265-1
  18. Walsh, P. C. (2010) Chemoprevention of prostate cancer. N. Engl. J. Med. 362,1237-1248. https://doi.org/10.1056/NEJMe1001045
  19. El-Dakhakhany, M. (1963) Studies on the chemical constitution of egyptian N. sativa L. seeds. Planta. Medica. 11, 465-470. https://doi.org/10.1055/s-0028-1100266
  20. Houghton, P. J., Zarka, R., De Lash Eras, B. and Hoult, J. R. (1995) Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta. Medica. 61, 33-36. https://doi.org/10.1055/s-2006-957994
  21. Worthen, D. R., Ghoshen, O. A. and Crooks, P. A. (1998) The in vitro antitumor activity of some crude and purified components of black seed. Nigella sativa L. Anticancer Res. 18, 1527-1532.
  22. Gali-Muhtasib, H. U., Abou Kheir, W. G., Kheir, L. A., Darwiche, N. and Crooks, P. A. (2004) Molecular pathway for thymoquinone-induced cell-cycle arrest and apoptosis in neoplastic keratinocytes. Anticancer Drugs 15, 389-399. https://doi.org/10.1097/00001813-200404000-00012
  23. Salem, M. L. (2005) Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int. Immunopharmacol. 5, 1749-1770. https://doi.org/10.1016/j.intimp.2005.06.008
  24. El-Mahady, M. A., Zhu, Q., Wang, Q. E., Wang, Q. E., Wani, G. and Wani, A. A. (2005). Thymoquinone induces apoptosis through activation of caspase-8 and mitochondrial events in $p^{53}$-null myoblastic leukemia HL-60 cells. International J. Cancer 117, 409-417. https://doi.org/10.1002/ijc.21205
  25. Gali-Muhtasib, H., Diab-Assaf, M. and Boltze, C. (2004) Thymoquinone extracted from black seed triggers apoptotic cell death in human colorectal cancer cells via a $p^{53}$-dependent mechanism. Int. J. Oncol. Rep. 25, 857-866.
  26. Gali-Muhtasib, H., Roessner, A. and Schneider-Stock, R. (2006) Thymoquinone: a promising anti-cancer drug from natural sources. Int. J. Biochem. Cell Biol. 38,1249-1253. https://doi.org/10.1016/j.biocel.2005.10.009
  27. Reis, C. A., Osorio, H., Silva, L., Gomes, C. and David, L. (2010) Alterations in glycosylation as biomarkers for cancer detection. J. Clin. Pathol. 63, 322-329. https://doi.org/10.1136/jcp.2009.071035
  28. Dabelsteen, E. (1996) Cell surface carbohydrates as prognostic marker in human carcinomas. J. Pathol. Rep. 179, 358-369. https://doi.org/10.1002/(SICI)1096-9896(199608)179:4<358::AID-PATH564>3.0.CO;2-T
  29. Yogeeswaran, G. (1983) Cell surface glycolipids and glycoproteins in malignant transformation. Adv. Cancer Res. 38, 289-350. https://doi.org/10.1016/S0065-230X(08)60191-8
  30. Warren, L., Buck, C. A. and Tusznski, G. P. (1978) Glycopeptide changes and malignant transformation: a possible role for carbohydrate in malignant behavior. Biochim. Biophys. Acta. 516, 97-127.
  31. Madrid, J. F., Aparicio, R., Saez, F. J. and Hernandez, F. (2000) Lectin cytochemical characterization of the n-and o-linked oligosaccharides in the human rectum. Histochem. J. 32, 281-289. https://doi.org/10.1023/A:1004084812168
  32. Nicolson, G. L. (1984) Cell surface molecular and tumor metastasis regulation of metastatic phenotypic diversity. Exp. Cell Res. 150, 3-22. https://doi.org/10.1016/0014-4827(84)90696-7
  33. Passaniti, A. and Hart, G. W. (1988) Cell surface sialylation and tumor metastasis: metastatic potential of B16 melanoma variants correlates with their relative number of specific penultimate oligosaccharide structures. J. Biol. Chem. 263, 7591-7603.
  34. Shamberger, R. J. (1986) Evaluation of water soluble and lipid soluble sialic acid levels as tumor markers. Anticancer Res. 6, 717-720.
  35. Rajpure, K. B., Patel, P. S., Chawda, J. G. and Shah, R. M. (2005) Clinical significance of total and lipid bound sialic acid levels in oral precancerous and oral cancer. J. Oral. Pathol. Med. 34, 263-267. https://doi.org/10.1111/j.1600-0714.2004.00210.x
  36. Verazin, G., Riley, W. M., Gregors, C., Tavto, J. J., Prorok, J. and Alhadeff, J. A. (1990) Serum sialic acid and carcino embryonic antigen levels in the detection and monitoring of colorectal cancer. Discolon. Rectum. 33, 139-142.
  37. Macbeth, R. A and Bekesi, J. G. (1964) Plasma glycoproteins of malignant disease. Arch. Surg. 88, 635-637.
  38. Suresh, K., Manoharan, S., Vijayaanand, M. A., Sugunadevi, G., Rajkamal, G. and Vrinda, V. (2009) Modifying effects of [6]-Paradol on glycoconjugates levels in 7,12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis. J. Cell Tissue Res. 3, 973-1028.
  39. Manoharan, S., Padmanabhan, M., Kolanjiappan, K., Ramachandran, C. R. and Suresh, K. (2004) Analysis of glycoconjugates in patients with oral squamous cell carcinoma. Clinica. Chimica. Acta. 339, 91-96. https://doi.org/10.1016/j.cccn.2003.09.006
  40. Singh, A. K. and Gopu, K. (2010) Synthesis and anti-oxidant properties of novel α-tocopherol glycoconjugates. Tetrahedron Lett. 51, 1180-1184. https://doi.org/10.1016/j.tetlet.2009.12.078
  41. Rao, V. R., Krishnamoorthy, L., Kumarasamy, S. and Ramaswamy, G. (1998) Circulating levels in serum of total sialic acid, lipid-associated sialic acid and fucose in precancerous lesion and cancer of the oral cavity. Cancer Detect. Prev. 22, 237-240. https://doi.org/10.1046/j.1525-1500.1998.0OA04.x
  42. Emmelot, P. (1973) Biochemical properties of normal and neoplastic cell surfaces. Eur. J. Cancer. 9, 319-333. https://doi.org/10.1016/0014-2964(73)90047-9
  43. Suresh, K., Manoharan, S., Panjamurthy, K. and Senthil, N. (2007) Modifying effects of Annona squamosa on glycoconjugates levels in 7,12-dimethylbenz[a]anthracene induced hamster buccal pouch carcinogenesis. J. Med. Sci. 7, 100-105. https://doi.org/10.3923/jms.2007.100.105
  44. Watanabe, S., Ichikawa, E., Takahashi, H. and Otsuka, F. (1995) Changes of cytokeratin and involucrin expression in squamous cell carcinomas of the skin during progression to malignancy. Br. J. Dermatol. 132, 730-739. https://doi.org/10.1111/j.1365-2133.1995.tb00718.x
  45. Morgan, P. R. and Su, L. (1994) Intermediate filaments in oral neoplasia. I. Oral cancer and epithelial dysplasia. Eur. J. Cancerl. 132, 160-166.
  46. Dodge, J. F., Mitchell, G. and Hanahan, D. (1963) The preparation and chemical characteristics of erythrocyte membrane. J. Biochem. Biophys. Arch. 100, 119-130. https://doi.org/10.1016/0003-9861(63)90042-0
  47. Quist, E. H. (1980) Regulation of erythrocyte membrane shapes by calcium ion. Biochem. Biophys. Commum. 92, 631-637. https://doi.org/10.1016/0006-291X(80)90380-0
  48. Niebes, P. (1972) Determination of enzymes and degradation products of glycosaminoglycans. Clin. Chim. Acta. 42, 399-408. https://doi.org/10.1016/0009-8981(72)90105-2
  49. Wangner, W. D. (1979) A more sensitive assay discriminating galactosamine in mixture. Anal. Biochem. 44, 369-394.
  50. Warren, L. J. (1959) Thiobarbutric acid assay of sialic acid. J. Biol. Chem. 234, 1974-1975.
  51. Dische, L. and Shettles, L. B. (1948) Specific color reactions of methyl pentoses and spectrophotometric micromethod for their determination. J. Biol. Chem. 175, 595-604.
  52. Katopodis, N. N. and Stock, C. C. (1980) Improved method to determine lipid bound sialic acid in plasma. Res. Commun. Chem. Pathol. Pharmacol. 30, 171-180.
  53. Lind-berg, K. and Rheinwald, J. G. (1989) Suprabasal 40 KD keratin (k19) expression as an immunohistological marker of premalignancy in oral epithelium. Am. J. Pathol. 134, 89-98.

Cited by

  1. Monascus purpureus-fermented products and oral cancer: a review vol.93, pp.5, 2012, https://doi.org/10.1007/s00253-012-3891-9
  2. Chemopreventive effect of syringic acid on 7,12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis vol.27, pp.8, 2017, https://doi.org/10.1080/15376516.2017.1349227
  3. Molecular effects of hesperetin, a citrus flavanone on7,12-dimethylbenz(a)anthracene induced buccal pouch squamous cell carcinoma in golden Syrian hamsters vol.123, pp.4, 2017, https://doi.org/10.1080/13813455.2017.1317815
  4. Mechanistic perspectives on cancer chemoprevention/chemotherapeutic effects of thymoquinone vol.768, 2014, https://doi.org/10.1016/j.mrfmmm.2014.05.003
  5. Thymoquinone as a Potential Adjuvant Therapy for Cancer Treatment: Evidence from Preclinical Studies vol.8, 2017, https://doi.org/10.3389/fphar.2017.00295
  6. Effects of red mold dioscorea on oral carcinogenesis in DMBA-induced hamster animal model vol.49, pp.6, 2011, https://doi.org/10.1016/j.fct.2011.03.010
  7. Hesperetin on Cell Surface Glycoconjugates Abnormalities and Immunohistochemical Staining with Cytokeratin in 7,12 Dimethylbenz(a)anthracene Induced Hamster Buccal Pouch Carcinogenesis vol.33, pp.4, 2018, https://doi.org/10.1007/s12291-017-0704-z