• 제목/요약/키워드: Five-fold cross validation

검색결과 27건 처리시간 0.021초

지원벡터기계를 이용한 출혈을 일으킨 흰쥐에서의 생존 예측 (Survival Prediction of Rats with Hemorrhagic Shocks Using Support Vector Machine)

  • 장경환;최재림;유태근;권민경;김덕원
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Hemorrhagic shock is a common cause of death in emergency rooms. Early diagnosis of hemorrhagic shock makes it possible for physicians to treat patients successfully. Therefore, the purpose of this study was to select an optimal survival prediction model using physiological parameters for the two analyzed periods: two and five minutes before and after the bleeding end. We obtained heart rates, mean arterial pressures, respiration rates and temperatures from 45 rats. These physiological parameters were used for the training and testing data sets of survival prediction models using an artificial neural network (ANN) and support vector machine (SVM). We applied a 5-fold cross validation method to avoid over-fitting and to select the optimal survival prediction model. In conclusion, SVM model showed slightly better accuracy than ANN model for survival prediction during the entire analysis period.

텍스트 분류 기반 기계학습의 정신과 진단 예측 적용 (Application of Text-Classification Based Machine Learning in Predicting Psychiatric Diagnosis)

  • 백두현;황민규;이민지;우성일;한상우;이연정;황재욱
    • 생물정신의학
    • /
    • 제27권1호
    • /
    • pp.18-26
    • /
    • 2020
  • Objectives The aim was to find effective vectorization and classification models to predict a psychiatric diagnosis from text-based medical records. Methods Electronic medical records (n = 494) of present illness were collected retrospectively in inpatient admission notes with three diagnoses of major depressive disorder, type 1 bipolar disorder, and schizophrenia. Data were split into 400 training data and 94 independent validation data. Data were vectorized by two different models such as term frequency-inverse document frequency (TF-IDF) and Doc2vec. Machine learning models for classification including stochastic gradient descent, logistic regression, support vector classification, and deep learning (DL) were applied to predict three psychiatric diagnoses. Five-fold cross-validation was used to find an effective model. Metrics such as accuracy, precision, recall, and F1-score were measured for comparison between the models. Results Five-fold cross-validation in training data showed DL model with Doc2vec was the most effective model to predict the diagnosis (accuracy = 0.87, F1-score = 0.87). However, these metrics have been reduced in independent test data set with final working DL models (accuracy = 0.79, F1-score = 0.79), while the model of logistic regression and support vector machine with Doc2vec showed slightly better performance (accuracy = 0.80, F1-score = 0.80) than the DL models with Doc2vec and others with TF-IDF. Conclusions The current results suggest that the vectorization may have more impact on the performance of classification than the machine learning model. However, data set had a number of limitations including small sample size, imbalance among the category, and its generalizability. With this regard, the need for research with multi-sites and large samples is suggested to improve the machine learning models.

A novel method for predicting protein subcellular localization based on pseudo amino acid composition

  • Ma, Junwei;Gu, Hong
    • BMB Reports
    • /
    • 제43권10호
    • /
    • pp.670-676
    • /
    • 2010
  • In this paper, a novel approach, ELM-PCA, is introduced for the first time to predict protein subcellular localization. Firstly, Protein Samples are represented by the pseudo amino acid composition (PseAAC). Secondly, the principal component analysis (PCA) is employed to extract essential features. Finally, the Elman Recurrent Neural Network (RNN) is used as a classifier to identify the protein sequences. The results demonstrate that the proposed approach is effective and practical.

Convolutional Neural Networks for Character-level Classification

  • Ko, Dae-Gun;Song, Su-Han;Kang, Ki-Min;Han, Seong-Wook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권1호
    • /
    • pp.53-59
    • /
    • 2017
  • Optical character recognition (OCR) automatically recognizes text in an image. OCR is still a challenging problem in computer vision. A successful solution to OCR has important device applications, such as text-to-speech conversion and automatic document classification. In this work, we analyze character recognition performance using the current state-of-the-art deep-learning structures. One is the AlexNet structure, another is the LeNet structure, and the other one is the SPNet structure. For this, we have built our own dataset that contains digits and upper- and lower-case characters. We experiment in the presence of salt-and-pepper noise or Gaussian noise, and report the performance comparison in terms of recognition error. Experimental results indicate by five-fold cross-validation that the SPNet structure (our approach) outperforms AlexNet and LeNet in recognition error.

가속도센서를 이용한 편마비성보행 평가 (Evaluation of Hemiplegic Gait Using Accelerometer)

  • 이준석;박수지;신항식
    • 전기학회논문지
    • /
    • 제66권11호
    • /
    • pp.1634-1640
    • /
    • 2017
  • The study aims to distinguish hemiplegic gait and normal gait using simple wearable device and classification algorithm. Thus, we developed a wearable system equipped three axis accelerometer and three axis gyroscope. The developed wearable system was verified by clinical experiment. In experiment, twenty one normal subjects and twenty one patients undergoing stroke treatment were participated. Based on the measured inertial signal, a random forest algorithm was used to classify hemiplegic gait. Four-fold cross validation was applied to ensure the reliability of the results. To select optimal attributes, we applied the forward search algorithm with 10 times of repetition, then selected five most frequently attributes were chosen as a final attribute. The results of this study showed that 95.2% of accuracy in hemiplegic gait and normal gait classification and 77.4% of accuracy in hemiplegic-side and normal gait classification.

Deep-learning based In-situ Monitoring and Prediction System for the Organic Light Emitting Diode

  • Park, Il-Hoo;Cho, Hyeran;Kim, Gyu-Tae
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.126-129
    • /
    • 2020
  • We introduce a lifetime assessment technique using deep learning algorithm with complex electrical parameters such as resistivity, permittivity, impedance parameters as integrated indicators for predicting the degradation of the organic molecules. The evaluation system consists of fully automated in-situ measurement system and multiple layer perceptron learning system with five hidden layers and 1011 perceptra in each layer. Prediction accuracies are calculated and compared depending on the physical feature, learning hyperparameters. 62.5% of full time-series data are used for training and its prediction accuracy is estimated as r-square value of 0.99. Remaining 37.5% of the data are used for testing with prediction accuracy of 0.95. With k-fold cross-validation, the stability to the instantaneous changes in the measured data is also improved.

Assessment of wall convergence for tunnels using machine learning techniques

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Mohammadi, Mokhtar;Ibrahim, Hawkar Hashim;Mohammed, Adil Hussein;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.265-279
    • /
    • 2022
  • Tunnel convergence prediction is essential for the safe construction and design of tunnels. This study proposes five machine learning models of deep neural network (DNN), K-nearest neighbors (KNN), Gaussian process regression (GPR), support vector regression (SVR), and decision trees (DT) to predict the convergence phenomenon during or shortly after the excavation of tunnels. In this respect, a database including 650 datasets (440 for training, 110 for validation, and 100 for test) was gathered from the previously constructed tunnels. In the database, 12 effective parameters on the tunnel convergence and a target of tunnel wall convergence were considered. Both 5-fold and hold-out cross validation methods were used to analyze the predicted outcomes in the ML models. Finally, the DNN method was proposed as the most robust model. Also, to assess each parameter's contribution to the prediction problem, the backward selection method was used. The results showed that the highest and lowest impact parameters for tunnel convergence are tunnel depth and tunnel width, respectively.

COVID-19 Diagnosis from CXR images through pre-trained Deep Visual Embeddings

  • Khalid, Shahzaib;Syed, Muhammad Shehram Shah;Saba, Erum;Pirzada, Nasrullah
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.175-181
    • /
    • 2022
  • COVID-19 is an acute respiratory syndrome that affects the host's breathing and respiratory system. The novel disease's first case was reported in 2019 and has created a state of emergency in the whole world and declared a global pandemic within months after the first case. The disease created elements of socioeconomic crisis globally. The emergency has made it imperative for professionals to take the necessary measures to make early diagnoses of the disease. The conventional diagnosis for COVID-19 is through Polymerase Chain Reaction (PCR) testing. However, in a lot of rural societies, these tests are not available or take a lot of time to provide results. Hence, we propose a COVID-19 classification system by means of machine learning and transfer learning models. The proposed approach identifies individuals with COVID-19 and distinguishes them from those who are healthy with the help of Deep Visual Embeddings (DVE). Five state-of-the-art models: VGG-19, ResNet50, Inceptionv3, MobileNetv3, and EfficientNetB7, were used in this study along with five different pooling schemes to perform deep feature extraction. In addition, the features are normalized using standard scaling, and 4-fold cross-validation is used to validate the performance over multiple versions of the validation data. The best results of 88.86% UAR, 88.27% Specificity, 89.44% Sensitivity, 88.62% Accuracy, 89.06% Precision, and 87.52% F1-score were obtained using ResNet-50 with Average Pooling and Logistic regression with class weight as the classifier.

Automatic Detection of Type II Solar Radio Burst by Using 1-D Convolution Neutral Network

  • Kyung-Suk Cho;Junyoung Kim;Rok-Soon Kim;Eunsu Park;Yuki Kubo;Kazumasa Iwai
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.213-224
    • /
    • 2023
  • Type II solar radio bursts show frequency drifts from high to low over time. They have been known as a signature of coronal shock associated with Coronal Mass Ejections (CMEs) and/or flares, which cause an abrupt change in the space environment near the Earth (space weather). Therefore, early detection of type II bursts is important for forecasting of space weather. In this study, we develop a deep-learning (DL) model for the automatic detection of type II bursts. For this purpose, we adopted a 1-D Convolution Neutral Network (CNN) as it is well-suited for processing spatiotemporal information within the applied data set. We utilized a total of 286 radio burst spectrum images obtained by Hiraiso Radio Spectrograph (HiRAS) from 1991 and 2012, along with 231 spectrum images without the bursts from 2009 to 2015, to recognizes type II bursts. The burst types were labeled manually according to their spectra features in an answer table. Subsequently, we applied the 1-D CNN technique to the spectrum images using two filter windows with different size along time axis. To develop the DL model, we randomly selected 412 spectrum images (80%) for training and validation. The train history shows that both train and validation losses drop rapidly, while train and validation accuracies increased within approximately 100 epoches. For evaluation of the model's performance, we used 105 test images (20%) and employed a contingence table. It is found that false alarm ratio (FAR) and critical success index (CSI) were 0.14 and 0.83, respectively. Furthermore, we confirmed above result by adopting five-fold cross-validation method, in which we re-sampled five groups randomly. The estimated mean FAR and CSI of the five groups were 0.05 and 0.87, respectively. For experimental purposes, we applied our proposed model to 85 HiRAS type II radio bursts listed in the NGDC catalogue from 2009 to 2016 and 184 quiet (no bursts) spectrum images before and after the type II bursts. As a result, our model successfully detected 79 events (93%) of type II events. This results demonstrates, for the first time, that the 1-D CNN algorithm is useful for detecting type II bursts.

텍스트 분류를 위한 자질 순위화 기법에 관한 연구 (An Experimental Study on Feature Ranking Schemes for Text Classification)

  • 김판준
    • 정보관리학회지
    • /
    • 제40권1호
    • /
    • pp.1-21
    • /
    • 2023
  • 본 연구는 텍스트 분류를 위한 효율적인 자질선정 방법으로 자질 순위화 기법의 성능을 구체적으로 검토하였다. 지금까지 자질 순위화 기법은 주로 문헌빈도에 기초한 경우가 대부분이며, 상대적으로 용어빈도를 사용한 경우는 많지 않았다. 따라서 텍스트 분류를 위한 자질선정 방법으로 용어빈도와 문헌빈도를 개별적으로 적용한 단일 순위화 기법들의 성능을 살펴본 다음, 양자를 함께 사용하는 조합 순위화 기법의 성능을 검토하였다. 구체적으로 두 개의 실험 문헌집단(Reuters-21578, 20NG)과 5개 분류기(SVM, NB, ROC, TRA, RNN)를 사용하는 환경에서 분류 실험을 진행하였고, 결과의 신뢰성 확보를 위해 5-fold cross validation과 t-test를 적용하였다. 결과적으로, 단일 순위화 기법으로는 문헌빈도 기반의 단일 순위화 기법(chi)이 전반적으로 좋은 성능을 보였다. 또한, 최고 성능의 단일 순위화 기법과 조합 순위화 기법 간에는 유의한 성능 차이가 없는 것으로 나타났다. 따라서 충분한 학습문헌을 확보할 수 있는 환경에서는 텍스트 분류의 자질선정 방법으로 문헌빈도 기반의 단일 순위화 기법(chi)을 사용하는 것이 보다 효율적이라 할 수 있다.