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Abstract 
COVID-19 is an acute respiratory syndrome that affects the 
host's breathing and respiratory system. The novel disease's first 
case was reported in 2019 and has created a state of emergency in 
the whole world and declared a global pandemic within months 
after the first case.  The disease created elements of socio-
economic crisis globally. The emergency has made it imperative 
for professionals to take the necessary measures to make early 
diagnoses of the disease. The conventional diagnosis for COVID-
19 is through Polymerase Chain Reaction (PCR) testing. 
However, in a lot of rural societies, these tests are not available 
or take a lot of time to provide results. Hence, we propose a 
COVID-19 classification system by means of machine learning 
and transfer learning models. The proposed approach identifies 
individuals with COVID-19 and distinguishes them from those 
who are healthy with the help of Deep Visual Embeddings 
(DVE). Five state-of-the-art models: VGG-19, ResNet50, 
Inceptionv3, MobileNetv3, and EfficientNetB7, were used in this 
study along with five different pooling schemes to perform deep 
feature extraction. In addition, the features are normalized using 
standard scaling, and 4-fold cross-validation is used to validate 
the performance over multiple versions of the validation data. 
The best results of 88.86% UAR, 88.27% Specificity, 89.44% 
Sensitivity, 88.62% Accuracy, 89.06% Precision, and 87.52% 
F1-score were obtained using ResNet-50 with Average Pooling 
and Logistic regression with class weight as the classifier. 
Keywords: 
COVID-19, Deep Visual Features, Transfer Learning, 
Classification, Logistic Regression. 

1. Introduction 

The novel coronavirus disease or COVID-19 has had 
a hazardous impact on human life and put great world 
powers in a state of crisis within months. The novel 
disease has been a major burden on the healthcare system 
all over the world. Coronavirus is a large family of 
zoonotic viruses (Diseases transmitted from animals) that 
can affect humans in diseases from the common cold to 
acute respiratory syndrome, or even pneumonia in severe 
cases [1]. The Traditional method of COVID-19 diagnosis, 
specific to Pakistan, is through polymerase chain reaction 

(PCR) tests, which take at least 24-72 hours in a primary 
medical facility and can take up to 3-7 days in rural areas. 
Since PCR tests are 90% effective within the first 4 days 
[2], it is too late to take the necessary measures. According 
to World Health Organization (WHO) official reporting, as 
of April 2022, there are more than 5 Billion confirmed 
cases [3]. And certainly, there will be more cases that were 
either misdiagnosed or could not even get a PCR screening 
due to the unavailability of resources in rural or tertiary 
medical facilities. Evolutions in Artificial intelligence (AI) 
suggest that one can train Machine Learning (ML) models 
to identify chest X-ray(CXR) images from individuals who 
have COVID-19 or use transfer learning-based 
Convolutional Neural Network (CNN) or ConvNets, for 
our COVID-19 classification task. According to Blažić, 
chest imaging is one of the main tools for screening 
individuals with COVID-19 used in hospitals [4]. It is also 
found to be faster than PCR testing and it provides us with 
an opportunity to automate the process of COVID-19 
diagnosis and test the efficacy of ML models for 
Computer-Aided Diagnosis(CAD). 
  
 In this study, we aim to propose a machine 
learning model which leverages the benefits of transfer 
learning-based deep neural networks and feature-
engineered ML models. The objectives of this research 
include training ML models using Deep Visual 
Embeddings(DVE) as image features and exploring which 
DVE, along with pooling schemes, performs efficiently 
under our X-ray classification setting. 
  
 This research paper is organized into the 
following sections. The introduction is included in Section 
I. Section II discusses the Literature survey and related 
works. Section III explains the methods and 
experimentations. It covers the portion, where we have 
discussed our approach to the problem and the datasets 
used in our work. Section IV includes the results and 
discussions. Section V highlights the conclusion and 
possible limitations of our work. 
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2. Literature review 

Ever since Alexnet [5], Deep Learning and ConvNets have 
revolutionized the paradigms of AI and ML. Many transfer  
learning applications play a significant role in assisting 
with state-of-the-art deep ConvNet models. A number of 
researchers have made significant contributions by 
leveraging transfer learning. This section discusses in 
detail the contributions of other Authors to X-ray 
diagnosis systems using Deep Learning and Artificial 
Intelligence applications. Table 1 gives a complete 
summary of contributions by other Authors. 
 
 In [6], Faisal et. al fine-tuned CNN Based 
architecture VGG-19 [19], NASNet [20], and 
MobilenetV2 [21]. In [7], Majid et al. proposed a deep 
ConvNet model trained from scratch. Along with a 
Bayesian optimization algorithm, a support vector machine 
(SVM) classifier was used to classify between extracted 
deep features. In [8], Xing et al. used transfer learning on 
models: ResNet50 [22], Xception [23], 
InceptionResNetV2 [24], and VGG16 to formulate a 
COVID-19 classification approach, from a collection of 
CT-scans and CXR images, using SVM (Support Vector 
Machine) as the benchmark classifier. In [9], Madaan et al. 
explored the training of DNNs from scratch and 
investigated the influence of different design choices such 
as pooling size and strides of 2D CNNs. In [10], Nishio et 
al. proposed a system that utilized pre-trained VGG16 
architecture and several data augmentation schemes on a 

3-class classification system. In [11], Tuan D. Pham fine-
tuned three pre-trained deep learning models without data 
augmentation to train 2-class and 3-class classification 
systems. In [12], Ozturk et al. proposed a binary and multi-
class model for COVID-19 and pneumonia detection 
namely DarkNet. In addition to creating the model from 
scratch, In this study, The you-only-look-once (YOLO) 
real-time object detection system was used by the DarkNet 
model as a classifier. In [13], Abbas et al. have extracted 
features from high-resolution CXR images with the help of 
models pre-trained on ImageNet and trained them using 
other Transfer learning models. In [14], Agarwal et al. 
proposed a 3-class CoroNet, deep learning architecture. 
Where they have used an AutoEncoder as a feature 
extractor and then transfer learning for multi-label 
classification. In [15], Kusakunniran et al. used a fine-
tuned ResNet-101 as the foundation model, but, trained it 
from scratch. In [16], Cuong Do et al. used a VGG-16 
model, pre-trained on ImageNet, and fine-tune it’s final 
layers to improve classification accuracy. In [17], 
Manokaran et al. also proposed a  fine-tuned DenseNet201 
[25] and performed end-to-end training, and compared 
their results with other transfer learning-based models. In 
[18], Maghdid et al. have used a modified AlexNet for 
multi-class classification. They have also employed fine-
tuning of hyper-parameters to improve the model’s overall 
performance.  
 

Many authors have approached this issue in unique 
and admirable ways. However, most of these approaches 
still have certain limitations. For instance, Authors [6], [7], 
[10], [12]–[14], [18] , have used very small datasets. 

 
Source 

 
Models 

 
Cross 

Validation 
 

Dataset Samples  
Acc. 
(%) 

 

 
Recall 

(%) 

 
Spec. 
(%) 

 
Sens. 
(%) 

F1-
Score 
(%) COVID Healthy 

[6] Fine-tuned VGG-19 5-fold 473 1845 99.5 98.8 - 99.5 99.2 

[7] End-to-end CNN with SVM 
classifier 

5-fold 219 1341 98.9 - 99.7 89.3 96.7 

[8] Comparative analysis of 
Transfer learning models 

No 4274 1583 84.0 82.0 - 84.0 80.0 

[9] XCovNet No 392 392 98.4 97.4 - 98.4 97.9 
[10] Deep CNN No 215 500 83.6 - - 90.3 - 

 
[11] 

Transfer learning on 
AlexNet, GoogleNet and 
Squeezenet 

No 438 721 95.4 96.7 96.2 92.1 94.3 

[12] DarkCovidNet 5-fold 200 200 87.0 89.9 92.1 85.3 87.3 
[13] Deep CNN (DeTraC) No 105 80 93.1 - 85.1 100 - 

[14] CoroNet No 89 7966 93.5 93.5 93.6 - 93.5 

[15] Fine- tuned ResNet-101 No 325 5318 98.0 - 98.0 97.0 - 

[16] Fine-tuned VGG-16 No 206 206 97.0 95.0 96.0 - - 

[17] Fine-tuned DenseNet201 No 644 4000 92.0 - 99.0 94.0 90.0 

[18] Modified AlexNet No 176 85 94.0 - 96.0 100 - 

Table 1 Literature Survey 
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Whereas, in an image classification-based deep learning 
setting a dataset of mere hundreds puts a question on the 
model’s overall performance and confidence. In some 
cases, for instance, in  [9], Deep Neural Network 
parameters are optimized directly onto the test partition, 
which is a bad practice and is likely to produce over-
optimistic results. Authors [6]–[8], [11], [14], [15] have 
not performed cross-validation to further validate the 
trained model’s mean accuracy and other performance 
metrics. While authors[10], [11], [13]–[15], [17], [18] 
have evaluated their model with accuracy metric on an 
imbalanced dataset. 

3. Methods 

The fundamental aim of this research is to provide CAD-
based automated recognition of COVID-19 and to propose 
a machine learning model which leverages the advantages 
of deep neural networks and feature engineered machine 
learning models. Certain limitations by other authors, 
discussed in the previous section, undermine overall 
confidence in such a model. Deep learning tasks require 
large datasets and perform complex image classification 
tasks such as Medical Image diagnosis. The datasets need 
to be cross-validated on larger datasets to justify the 
confidence of such a model. The project methodology is 
illustrated in Fig1. This study is distributed into the 
following objectives, Performed in the order, 

1. Collecting Datasets for COVID-19 and Healthy 
CXR images from various publically available 
sources. The details of the collected Datasets are 
elaborated in Table 2. 

2. To train ML models using Deep Visual 
Embeddings as image features extracted from 
state-of-the-art transfer learning models. 

3. Perform a comparative analysis of popular 
Transfer learning models, along with different 
pooling schemes, to evaluate which model 
provides better results.   

3.1 Datasets 

As discussed in the literature survey section, the most 
common limitation of other authors was the size of 
datasets deployed in their respective models. Lacking in 
training samples may not provide robust results in terms of 
model deployment and performance. The datasets used in 
this project are collected from various public sources. 
Table 2 gives the information on the total contents of the 
datasets. The total number of COVID-19 images was 
4,494 and the number of healthy images was 10,545 after 
all samples were combined and duplicates were deleted. 
All the images used here are chest PA-view. The complete 
dataset was used for DVE evaluation from different pre-
trained ConvNets, which is discussed in the later section. 

Figure 1 Process flow diagram of proposed system 
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Table 2 Publicly Collected Datasets from various sources 

Serial 
no. 

Dataset Name 

CXR samples 

COVID-
19 

Healthy 

1 
COVID-19 Radiology Database 

[29] 
3616 10192 

2 
Chest X-ray Images with 3 Class: 

Covid-19 , Normal and 
Pneumonia[30] 

221 234 

3 
COVID-19 X-ray Dataset with 
COVID-19 CNN Pneumonia 

Detector[31] 
94 94 

4 
COVID-19 Chest X-ray Image 

Dataset[32] 
69 25 

5 
Covid_w/wo_Pneumonia Chest X-

ray[33] 
531 - 

6 
COVID-19 chest x-ray image data 

collection[34] 
305 - 

7 
Chest X-ray for covid-19 

detection[35] 
174 174 

 

3.2 Deep Visual Embeddings Evaluation 

Deep Visual Embedding (DVE) are image features 
extracted from our dataset, CXR images, with the 
assistance of pre-trained Deep-CNN models. In this stage 
of experimentation, we use the collected datasets from 
Table 2, to evaluate DVEs on the complete dataset using 
deep ConvNets initially trained on the ImageNet. It is 
observed from the literature survey that researchers prefer 
transfer learning models over deep-CNNs designed from 
scratch. We have performed CNN-based feature extraction 
on five transfer learning models: EfficientnetB7 [36], 
Inceptionv3 [37], ResNet50, VGG-19 and MobileNetv2, 
and, without their classification layers. The models pre-
trained on ImageNet take less training time and will 
provide better results in classifications. At this point, we 
understand that Deep Neural Networks out-perform any 
hand-crafted feature engineering when it comes to feature 
identification. However, their performance is limited when 
it comes to small data, we intend to leverage the feature 
identification from ConvNets and use Machine Learning 
based traditional classifier. The DVEs evaluated from 
these models are then pooled with five pooling schemes. 
The pooling schemes include average pooling, max 
pooling, median pooling, range pooling, and percentile 
pooling. The feature extraction was performed using the 
cloud-based ‘Google Colab’ platform, without GPU or 
TPU usage. 

3.3 Machine Learning 

The mentioned models along with 5 pooling schemes 
generate a sum of 25 DVEs from the raw dataset of CXR 
images. All the raw features are then normalized using 
standard scaling and stratified nested 4-fold cross-

validation, to avoid overfitting constraints. Authors in [9] 
have their model validated on the same dataset as training, 
which can provide over-optimistic results. To overcome 
this limitation, a 4 fold cross-validation is employed to 
have minimal bias and to validate the model performance 
such that it does not provide misleading results in practice. 

3.4 Logistic Regression Classifier 

For the classification, of our radiological CAD system, 
we have chosen logistic regression classifier. It performs 
very well under binary limited data conditions and similar 
observations have been made by Author[38] as well. 
Logistic Regression classifier also provides Class weight, 
which is proven to improve results in Applied Machine 
Learning problems with class imbalance. It works on the 
concept, that both the majority and minority classes, which 
are Healthy and COVID CXR images respectively, are 
given initially added weights based on the ratio of class 
imbalance ratio. In this case, the minority class i-e COVID 
is given more weight than the majority class of Healthy 
samples, such as modifying the log loss function to avoid 
higher bias or any misclassification. The list of results is 
attached in Table 3. Our benchmark metric to evaluate the 
model is UAR (Unweighted Average Recall). Since 
Accuracy is defined as the ratio of total correct predictions 
over total predictions, the Accuracy parameter might 
provide erroneous results in this case, as classes are 
imbalanced. Other metrics such as F1-score, Recall, and 
precision have been used, but the Unweighted Average 
Recall is a better metric to optimize when the available 
sample classes are imbalanced, and it is closely related to 
the accuracy. In this phase of experimentation, we have 
used logistic regression classifier with class weight on the 
25 DVE obtained from the previous phase. The results are 
shown in Table 2. 

4. Results & Discussion 

From the experimentations, we have two major 
outcomes to present. At first, Table 3 shows the 25 DVEs, 
evaluated from an average of 4-fold cross-validation and 
standard scaling normalization. These DVEs show which 
embeddings perform better in comparison to other transfer 
learning models for our X-ray classification task.  For 
instance, compared to other models, the EfficientNetB7 is 
the most recently published and it is the scaled-up variant 
of MobileNet and ResNet Architecture [36]. But, from our 
empirical testing, it is found that the ResNet-50 model 
with average pooling gives more promising results with a 
UAR of 88.86%, whereas the EfficientNetB7 has the 
second-highest UAR of 88.43%. However, with a 
Sensitivity of 93.07%, which is greater than other 
performance metrics, there is a strong possibility that the 
EfficientNetB7 will generate a lot more false-positives 
than other models. Secondly, it is also observed that the 
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Average pooling outperforms other pooling schemes, with 
prominent results in all the models followed by percentile 
pooling. We also signify the importance of using 4-fold 
cross-validation, which is found better than train/test split 
and helps in reducing the bias of the overall model. The 
performance metrics of our final model are 88.86% UAR, 
88.62% Accuracy,89.06% precision, 89.44% Sensitivity, 
88.27% Specificity and 87.52% F1Score. 

Table 3: Results of Logistic Regression on DVEs 

Model 
Name 

Poolin
g 

UA
R 

Spe
c. 

Sen
s. 

Acc
. 

Pre
c. 

F1 

EfficientN
etB7 

Averag
e 

88.
43 

83.
79 

93.
07 

86.
55 

89.
27 

85.
98 

Percent
ile 

88.
03 

84.
14 

91.
93 

86.
45 

88.
68 

85.
79 

Median 
88.
02 

84.
65 

91.
39 

86.
65 

88.
47 

85.
9 

Range 
86.
08 

82.
55 

89.
62 

84.
65 

86.
85 

83.
65 

Max 
86.
07 

82.
54 

89.
6 

84.
63 

86.
82 

83.
64 

Inception
V3 

Averag
e 

85.
55 

84.
41 

86.
69 

85.
09 

85.
15 

83.
65 

Percent
ile 

85.
29 

84.
36 

86.
22 

84.
91 

85.
17 

83.
49 

Median 
83.
41 

82.
29 

84.
53 

82.
95 

83.
03 

81.
35 

Range 
83.
39 

82.
41 

84.
38 

82.
99 

83.
25 

81.
42 

Max 
83.
37 

82.
33 

84.
42 

82.
95 

83.
06 

81.
34 

MobileNet
V2 

Averag
e 

85.
44 

83.
69 

87.
18 

84.
73 

85.
38 

83.
4 

Percent
ile 

84.
82 

85.
61 

84.
04 

85.
14 

84 
83.
32 

Median 
84.
74 

82.
51 

86.
98 

83.
83 

84.
46 

82.
48 

Range 
84.
71 

83.
11 

86.
31 

84.
06 

84.
52 

82.
61 

Max 
84.
69 

82.
52 

86.
87 

83.
81 

84.
45 

82.
46 

ResNet50 

Averag
e 

88.
86 

88.
27 

89.
44 

88.
62 

89.
06 

87.
52 

Percent
ile 

88.
23 

88.
31 

88.
14 

88.
26 

88.
18 

86.
96 

Median 
87.
21 

84.
35 

90.
07 

86.
05 

87.
73 

85.
1 

Range 
87.
18 

84.
33 

90.
03 

86.
02 

87.
69 

85.
07 

Max 
81.
58 

80.
75 

82.
41 

81.
24 

82.
04 

79.
47 

VGG19 

Averag
e 

87.
48 

86.
67 

88.
3 

87.
15 

86.
05 

85.
72 

Percent
ile 

86.
17 

83.
97 

88.
37 

85.
27 

84.
54 

83.
89 

Median 
86.
14 

83.
87 

88.
41 

85.
22 

84.
51 

83.
84 

Range 
84.
95 

82.
32 

87.
58 

83.
88 

83.
73 

82.
49 

Max 
74.
92 

72.
8 

77.
05 

74.
06 

72.
63 

71.
86 

 

5. Conclusion 

In this research, we have investigated the efficacy of 
different design choices for the diagnosis of COVID-19, 
using Machine Learning models, from X-ray images. Five 
Deep Neural Networks with as many pooling schemes 
were used to evaluate Deep Visual Embeddings and tested 
using stratified 4-fold cross-validation and logistic 
regression with class weight as the classifier. The foremost 
results were achieved from the ResNet50 model with an 
average pooling scheme, the model gives a UAR of 
88.86%. The Coronaviruses are zoonotic in nature, which 
implies they are transferred from animals to humans. 
Detailed investigations by professionals have made 
observations that SARS-CoV was transmitted from a 
variant of cats to humans and MERS-CoV from camels to 
humans[39]. Research has also shown that several known 
coronaviruses are circulating in animals that have not yet 
infected humans[40]. This research can be used as another 
stepping stone for our leap in the paradigms of AI and 
Machine Learning. It can also be used in the future when a 
different novel disease is encountered by society. Or, the 
proposed model can be deployed into medical practice to 
observe the human-AI interaction in practice. Two-thirds 
of the global population lacks access to radiology 
diagnostics, according to a report by World Health 
Organization[41]. Thus it is believed that computer-aided 
diagnosis holds the key to overcoming this particular 
obstacle. 

5.1 Limitations 

The datasets for this research were collected from 
publicly available resources and then reviewed thoroughly. 
The tests and experimentations were based on the premise 
that these datasets were examined by experts in the first 
place. 
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