DOI QR코드

DOI QR Code

A Novel Endo-β-1,4-xylanase from Acanthophysium sp. KMF001, a Wood Rotting Fungus

  • Yoon, Sae-Min (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Kim, Yeong-Suk (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Kim, Young-Kyoon (Department of Forest Products and Biotechnology, Kookmin University) ;
  • Kim, Tae-Jong (Department of Forest Products and Biotechnology, Kookmin University)
  • Received : 2018.07.10
  • Accepted : 2018.10.18
  • Published : 2018.11.25

Abstract

Acanthophysium sp. KMF001, a wood rotting fungus, produces a strong crude enzyme complex that efficiently produces simple sugars from wood. The transcriptomic analysis of Acanthophysium sp. KMF001 identified 14 genes for putative glycoside hydrolases. Among them, isotig01043 was expressed heterogeneously in Escherichia coli BL21(DE3), and the expressed protein exhibited an endo-${\beta}$-1,4-xylanase activity which showed the optimum reaction at pH 5.0 and $30^{\circ}C$. The enzyme kinetic values of $K_m$ and $V_{max}$ were 25.92 mg/ml and $0.628{\mu}mole/mg/ml$, respectively. The enzymatic characteristics of the expressed xylanase showed a typical fungal xylanase. However, the bioinformatics analysis suggested that the protein encoded by isotig01043 was a novel xylanase based on a low identity when it was compared with the closest protein in the NCBI database and a similar protein domain with GH16_fungal_Lam16A_glucanase, which had not been earlier suggested as a xylanase.

Keywords

References

  1. Beg, Q., Kapoor, M., Mahajan, L., Hoondal, G. 2001. Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology 56(3): 326-338. https://doi.org/10.1007/s002530100704
  2. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1): 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Burgess, R.R. 1996. Purification of overproduced Escherichia coli RNA polymerase $\sigma$ factors by solubilizing inclusion bodies and refolding from Sarkosyl. Methods in Enzymology 273: 145-149. Academic Press.
  4. Chedgy, R.J., Lim, Y.W., Breuil, C. 2009. Effects of leaching on fungal growth and decay of western red cedar. Canadian Journal of Microbiology 55(5): 578-586. https://doi.org/10.1139/W08-161
  5. Cheng, H. 2014. Biotechnology of lignocellulose: Theory and practice. Springer, Netherlands.
  6. Choengpanya, K., Arthornthurasuk, S., Wattana-amorn, P., Huang, W.T., Plengmuankhae, W., Li, Y.K., Kongsaeree, P.T. 2015. Cloning, expression and characterization of $\beta$-xylosidase from Aspergillus niger ASKU28. Protein Expression and Purification 115: 132-140. https://doi.org/10.1016/j.pep.2015.07.004
  7. Guo, B., Chen, X.-L., Sun, C.-Y., Zhou, B.-C., Zhang, Y.-Z. 2009. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-$\beta$-1,4-xylanase from marine Glaciecola mesophila KMM 241. Applied Microbiology and Biotechnology 84(6): 1107-1115. https://doi.org/10.1007/s00253-009-2056-y
  8. Joo, A.R., Jeya, M., Lee, K.M., Sim, W.I., Kim, J.S., Kim, I.W., Kim, Y.S., Oh, D.K., Gunasekaran, P., Lee, J.K. 2009. Purification and characterization of a $\beta$-1,4-glucosidase from a newly isolated strain of Fomitopsis pinicola. Applied Microbiology and Biotechnology 83(2): 285-294. https://doi.org/10.1007/s00253-009-1861-7
  9. Khandeparkar, R., Bhosle, N.B. 2006. Purification and characterization of thermoalkalophilic xylanase isolated from the Enterobacter sp. MTCC 5112. Research in Microbiology 157(4): 315-325. https://doi.org/10.1016/j.resmic.2005.12.001
  10. Khandeparkar, R.D.S., Bhosle, N.B. 2006. Isolation, purification and characterization of the xylanase produced by Arthrobacter sp. MTCC 5214 when grown in solid-state fermentation. Enzyme and Microbial Technology 39(4): 732-742. https://doi.org/10.1016/j.enzmictec.2005.12.008
  11. Kim, D.-H., Paik, K.-H. 1997 Variation of oak kraft pulp properties by xylanase treatment in C/D, P and Z stage. Journal of the Korean Wood Science and Technology 25(2): 100-109.
  12. Kim, H.J., Wi, S.G., Bae, H.-J. 2007 Biobleaching of softwood kraft pulp using recombinanat xylanase and celluase. Journal of the Korean Wood Science and Technology 35(6): 166-174.
  13. Kim, Y.-S., Kim, T.-J., Shin, K., Yoon, S.-M. 2016. Novel Acanthophysium sp. KMF001 having high cellulase activity. Korean patent 10-1621425.
  14. Laemmli, U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680-685. https://doi.org/10.1038/227680a0
  15. Lineweaver, H., Burk, D. 1934. The determination of enzyme dissociation constants. Journal of the American Chemical Society 56(3): 658-666. https://doi.org/10.1021/ja01318a036
  16. Liu, L., Zhang, G., Zhang, Z., Wang, S., Chen, H. 2011. Terminal amino acids disturb xylanase thermostability and activity. The Journal of Biological Chemistry 286(52): 44710-44715. https://doi.org/10.1074/jbc.M111.269753
  17. Marchler-Bauer, A., Bryant, S.H. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Research 32(suppl 2): W327-W331. https://doi.org/10.1093/nar/gkh454
  18. Marchler-Bauer, A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., Lu, F., Marchler, G.H., Song, J.S., Thanki, N., Wang, Z., Yamashita, R.A., Zhang, D., Zheng, C., Bryant, S.H. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Research 43(D1): D222-D226. https://doi.org/10.1093/nar/gku1221
  19. Nakatani, Y., Lamont, I.L., Cutfield, J.F. 2010. Discovery and characterization of a distinctive exo-1,3/1,4-(beta)-glucanase from the marine bacterium Pseudoalteromonas sp. strain BB1. Applied and Environmental Microbiology 76(20): 6760-6768. https://doi.org/10.1128/AEM.00758-10
  20. Ninawe, S., Kapoor, M., Kuhad, R.C. 2008. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresource Technology 99(5): 1252-1258. https://doi.org/10.1016/j.biortech.2007.02.016
  21. Okuyama, M., Yoshida, T., Hondoh, H., Mori, H., Yao, M., Kimura, A. 2014. Catalytic role of the calcium ion in GH97 inverting glycoside hydrolase. FEBS Letters 588(17): 3213-3217. https://doi.org/10.1016/j.febslet.2014.07.002
  22. Piza, F.A., Siloto, A., Carvalho, C.V., Franco,T.T. 1999. Production, characterization, purification of chitosanase from Bacillus cereus. Brazilian Journal of Chemical Engineering 16(2): 185-192. https://doi.org/10.1590/S0104-66321999000200011
  23. Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., Amorim, D.S. 2005. Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology 67(5): 577-591. https://doi.org/10.1007/s00253-005-1904-7
  24. Quevedo-Hidalgo B, Narvaez-Rincon P, Pedroza-Rodriguez A, Velasquez-Lozano M. 2012. Degradation of Chrysanthemum (Dendranthema grandiflora) wastes by Pleurotus ostreatus for the production of reducing sugars. Biotechnology and Bioprocess Engineering 17(5): 1103-1112. https://doi.org/10.1007/s12257-012-0227-7
  25. Rio, D.C., Ares, M., Hannon, G.J., Nilsen, T.W. 2010. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protocols 2010(6): pdb.prot5439.
  26. Sa-Pereira, P., Carvalho, A.S.L., Ferreira, M.C., Aires-Barros, M.R. 2004. Thermostabilization of Bacillus subtillis CCMI 966 xylanases with trehalose: Study of deactivation kinetics. Enzyme and Microbial Technology 34(3-4): 278-282. https://doi.org/10.1016/j.enzmictec.2003.11.014
  27. Shin, K., Yoon, S.-M., Kim, J., Kim, Y.-K., Kim, T.-J., Kim, Y.-S. 2016. Biopolishing of cotton fabric using crude cellulases from Acanthophysium sp. KMF001. Journal of the Korean Wood Science and Technology 44(3): 381-388. https://doi.org/10.5658/WOOD.2016.44.3.381
  28. Singh, S., Madlala, A.M., Prior, B.A. 2003. Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiology Reviews 27(1): 3-16. https://doi.org/10.1016/S0168-6445(03)00018-4
  29. Spurway, T.D., Morland, C., Cooper, A., Sumner, I., Hazlewood, G.P., O'Donnell, A.G., Pickersgill, R.W., Gilbert, H.J. 1997. Calcium protects a mesophilic xylanase from proteinase inactivation and thermal unfolding. Journal of Biological Chemistry 272(28): 17523-17530. https://doi.org/10.1074/jbc.272.28.17523
  30. Trevizano, L.M., Ventorim, R.Z., de Rezende, S.T., Silva Junior, F.P., Guimaraes, V.M. 2012. Thermostability improvement of Orpinomyces sp. xylanase by directed evolution. Journal of Molecular Catalysis B: Enzymatic 81: 12-18. https://doi.org/10.1016/j.molcatb.2012.04.021
  31. Wang, K., Luo, H., Tian, J., Turunen, O., Huang, H., Shi, P., Hua, H., Wang, C., Wang, S., Yao, B. 2014. Thermostability improvement of a Streptomyces xylanase by introducing proline and glutamic acid residues. Applied and Environmental Microbiology 80(7): 2158-2165. https://doi.org/10.1128/AEM.03458-13
  32. Wong, K.K., Tan, L.U., Saddler, J.N. 1988. Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiological Reviews 52(3): 305-317.
  33. Yazawa, R., Takakura, J., Sakata, T., Ihsanawati, Yatsunami, R., Fukui, T., Kumasaka, T., Tanaka, N., Nakamura, S. 2011. A calcium-dependent xylan-binding domain of alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Bioscience, Biotechnology, and Biochemistry 75(2): 379-381. https://doi.org/10.1271/bbb.100730