• Title/Summary/Keyword: Acanthophysium sp.

Search Result 3, Processing Time 0.018 seconds

Acanthophysium sp. KMF001, a New Strain with High Cellulase Activity

  • YOON, Sae-Min;PARK, So-Hyun;KIM, Tea-Jong;KIM, Young-Kyoon;KIM, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.751-760
    • /
    • 2019
  • Cellulase is an eco-friendly biocatalyst, and its demand is growing in many industrial applications such as food, textile, paper, and bioenergy. Strains with a high cellulase activities are the starting point for the economic production of cellulase. In a previous study, Acanthophysium sp. KMF001 with high cellulase production ability was selected among 54 wood-rotting fungi. In this study, we evaluated the cellulase productivity of Acanthophysium sp. KMF001 quantitatively and analyzed its taxonomic location using a genetic method. Acanthophysium sp. KMF001 showed high cellulase productivity similar to that of Acanthophysium bisporum and was much better than A. bisporum in specific enzyme activity. The 28S rRNA sequence of Acanthophysium sp. KMF001 was similar to that of Acanthophysium lividocaeruleum MB1825, with 98.40% homology. Phylogenetic analysis suggested that Acanthophysium sp. KMF001 is a new strain. In this study, we propose a new strain with high cellulase productivity.

Biopolishing of Cotton Fabric using Crude Cellulases from Acanthophysium sp. KMF001 (목재부후균, Acanthophysium sp. KMF001, 유래 섬유소분해효소를 이용한 섬유 개량)

  • Shin, Keum;Yoon, Sae-Min;Kim, Juhea;Kim, Young-Kyoon;Kim, Tae-Jong;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.381-388
    • /
    • 2016
  • Biopolishing using cellulases was introduced in the production of cotton fabric in order to improve the quality of fabric environmental friendly and is commonly used in the textile industry. In this study, the application of a crude cellulase from Acanthophysium sp. KMF001, which was excellent for the saccharification of cellulose, on biopolishing was evaluated. The optimum treatment biopolishing condition was at $50^{\circ}C$ and pH 4.5 for 60 minutes with 10% crude cellulase of fabric weight. After the optimized biopolishing, the crude cellulase of Acanthophysium sp. KMF001 reduced the tensile strength of the tested cotton fabric less than a commercial cellulase. The appearance of the cotton fabric after the treatment of the crude cellulase of Acanthophysium sp. KMF001 was similar to the fabric after a commercial cellulase treatment. All these results support that the crude cellulase of Acanthophysium sp. KMF001 was a good biopolishing cellulase.

A Novel Endo-β-1,4-xylanase from Acanthophysium sp. KMF001, a Wood Rotting Fungus

  • Yoon, Sae-Min;Kim, Yeong-Suk;Kim, Young-Kyoon;Kim, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.670-680
    • /
    • 2018
  • Acanthophysium sp. KMF001, a wood rotting fungus, produces a strong crude enzyme complex that efficiently produces simple sugars from wood. The transcriptomic analysis of Acanthophysium sp. KMF001 identified 14 genes for putative glycoside hydrolases. Among them, isotig01043 was expressed heterogeneously in Escherichia coli BL21(DE3), and the expressed protein exhibited an endo-${\beta}$-1,4-xylanase activity which showed the optimum reaction at pH 5.0 and $30^{\circ}C$. The enzyme kinetic values of $K_m$ and $V_{max}$ were 25.92 mg/ml and $0.628{\mu}mole/mg/ml$, respectively. The enzymatic characteristics of the expressed xylanase showed a typical fungal xylanase. However, the bioinformatics analysis suggested that the protein encoded by isotig01043 was a novel xylanase based on a low identity when it was compared with the closest protein in the NCBI database and a similar protein domain with GH16_fungal_Lam16A_glucanase, which had not been earlier suggested as a xylanase.