The conventional normalized least mean square (NLMS) algorithm is the most widely used for adaptive identification within a non-stationary input context. The convergence of the NLMS algorithm is independent of environmental changes. However, its steady state performance is impaired during input sequences with low dynamics. In this paper, we propose a new NLMS algorithm which is, in the steady state, insensitive to the time variations of the input dynamics. The square soot (SR)-NLMS algorithm is based on a normalization of the LMS adaptive filter input by the Euclidean norm of the tap-input. The tap-input power of the SR-NLMS adaptive filter is then equal to one even during sequences with low dynamics. Therefore, the amplification of the observation noise power by the tap-input power is cancelled in the misadjustment time evolution. The harmful effect of the low dynamics input sequences, on the steady state performance of the LMS adaptive filter are then reduced. In addition, the square root normalized input is more stationary than the base input. Therefore, the robustness of LMS adaptive filter with respect to the input non stationarity is enhanced. A performance analysis of the first- and the second-order statistic behavior of the proposed SR-NLMS adaptive filter is carried out. In particular, an analytical expression of the step size ensuring stability and mean convergence is derived. In addition, the results of an experimental study demonstrating the good performance of the SR-NLMS algorithm are given. A comparison of these results with those obtained from a standard NLMS algorithm, is performed. It is shown that, within a non-stationary input context, the SR-NLMS algorithm exhibits better performance than the NLMS algorithm.
Journal of information and communication convergence engineering
/
v.8
no.2
/
pp.159-162
/
2010
This paper presents a new Kurtosis driven Variable Step-Size Normalized Least Mean Square (KVSSN-LMS) algorithm to prevent repeater from oscillation due to feedback signal of radio frequency (RF) repeater. To get better Mean Square Error (MSE) performance, step-size is adjusted using the kurtosis. The proposed algorithm shows the better performance of steady state MSE. The proposed algorithm shows a better ERLE performance than that of KVSS-LMS, VSS-NLMS, NLMS algorithms.
The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.11C
/
pp.1127-1133
/
2007
This paper proposes one of normalized QR-typed LMS (Least Mean Square) algorithms with computational complexity of O(N). This proposed algorithm shows the normalized property in terms of theoretical characteristics. This proposed algorithm is one of algorithms which normalize variance of input signal in terms of mean because QR-typed LMS is proportional to variance of input signal. In this paper, convergence characteristic analysis of normalized algorithm was made. Computer simulation was made by the algorithms used for echo canceller. Proposed algorithm has similar performance to theoretical value. And, we can see that proposed method shows similar one to performance of NLMS.by comparison among different algorithms.
In this paper, we propose a normalization algorithm that can be applied to adaptive filters for multi-channel active noise control. The FxLMS (Filtered-x Least Mean Square) algorithm for the single-channel active noise control can be normalized in the same way as the NLMS (Normalized Least Mean Square) algorithm, whereas in case of the multi-channel active noise control, the single-channel normalization for the FxLMS algorithm cannot be extended to the normalization for the multi-channel FxLMS algorithm straightforwardly. First, we adopt a generalized normalization algorithm for the multi-channel FxLMS algorithm based on the principle of minimal disturbance and then, proposed a normalized algorithm considering only diagonal elements to avoid computation for matrix inversion. We carried out performance comparisons of the proposed algorithm with other algorithms without normalization. It is shown that the proposed algorithm presents better convergence characteristics under non-stationary environments.
The Journal of Korean Institute of Communications and Information Sciences
/
v.33
no.4C
/
pp.305-311
/
2008
In this paper, we proposed an algorithm for adaptive noise cancellation (ANC) using the variable step size normalized least mean square (VSSNLMS) in real-time automobile environment. As a basic algorithm for ANC, the LMS algorithm has been used for its simplicity. However, the LMS algorithm has problems of both convergence speed and estimation accuracy in real-time environment. In order to solve these problems, the VSSLMS algorithm for ANC is considered in nonstationary environment. By computer simulation using real-time data acquisition system(USB 6009), VSSNLMS algorithm turns out to be more effective than the LMS algorithm in both convergence speed and estimation accuracy.
통신망에서 최적 적응 반향제거기(Echo Canceller; EC)는 반향성분이 길게 존재하는 환경에서도 실시간으로 동작할 수 있도록 알고리즘이 간결하여야 하며, 시간에 따라 빠르게 변하는 동특성의 반향경로에서도 동작을 보장할 수 있도록 빠른 수렴특성을 갖아야 한다. 또한, 전화망에서 수십 [ms] 이상의 지연이 발생 할 경우에도 반향제거 성능이 우수해야 한다. 본 논문에서는 이러한 조건을 만족시키기 위해 오차의 크기에 따라 수렴속도를 가변시키는 오차적응 NLMS(Error-Adaptive NLMS) 알고리즘을 제안하였으며, 시뮬레이션을 통해 일반적으로 사용되는 LMS(Least Mean Square) 알고리즘과 이를 개선한 NLMS(Normalized LMS) 알고리즘과 성능을 비교하였다.
In the paper, we propose a new CMF(Constant Modulus Fourth) algorithm for WCDMA(Wideband Code Multiple Access) RF(Radio Frequency) Repeater. CMF algorithm is proposed by modifying the CMA(Constant Modulus Algorithm) algorithm and improved performances are achieved by properly adjusting step size values. The steady state MSE(Mean Square Error) performance of the proposed CMF algorithm with step size of 0.35 is about 4dB better than that of the conventional CMA algorithm. And the proposed CMF algorithm requires 400~1100 less iterations than the LMS(Least Mean Square) and NLMS(Normalized Least Mean Square) algorithms at MSE of -25dB.
The Journal of Korean Institute of Communications and Information Sciences
/
v.16
no.12
/
pp.1274-1285
/
1991
This paper presents a statistical convergence analysis of the normalized least mean square(NLMS)algorithm that employs a single-pole lowpass filter, In this algorithm the lowpass filter is used to adjust its output towards the estimated value of the input signal power recursively. The estimated input signal power so obtained at each time is then used to normalize the convergence parameter. Under the assumption that the primary and reference inputs to the adaptive filter are zero mean wide sense stationary, and Gaussian random processes, and further making use of the independence assumption. we derive expressions that characterize the mean and maen squared behavior of the filter coefficients as well as the mean squared estimation error. Conditions for the mean and mean squared convergence are explored. Comparisons are also made between the performance of the NLMS algorithm and that of the popular least mean square(LMS) algorithm Finally, experimental results that show very good agreement between the analytical and emprincal results are presented.
In this paper, we made shorter EDT(early decay time) of room reverberation curve using multiple-channel. The speech signal was processed inverse filtering with full-band and sub-band in the basis MINT, and then the multiple-channel adaptive filters were used LMS (Least Mean Square) and NLMS (Normalized Least Mean Square) algorithm. Experimental results, we could get 1/3 of time reduction at 20dB level in the reverberation curve using full-band NLMS when two microphones were used. Also, it is shown that the speech articulation was improved 80% from the test listeners with the speech, which was to shorten EDT by MINT in the subjective assessments using real room impulse response.
The Journal of Korean Institute of Communications and Information Sciences
/
v.33
no.7C
/
pp.562-568
/
2008
This paper proposes the scheme which obtain the coefficients of TDL filter and two normalization algorithms among methods which get solution of equivalent Wiener-Hopf Equation in Gram-Schmidt algorithm. Compared to the conventional NLMS algorithm, normalizes with sum of power of inputs, the presented algorithms normalize using sums of eigenvalues. Using computer simulation, we perform an system identification in an unstable environment where two poles are located in near position outside unit circle. Consequently, the proposed algorithms get the coefficients of TDL filter in Gram-Schmidt algorithm recursively and show better convergence performance than conventional NLMS algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.