A Study on the to Shorten of Early Decay Time in the Reverberation Curve Using MINT

MINT법을 이용한 실내 잔향곡선의 초기감쇠시간 단축에 관한 연구

  • 차경환 (동서대학교 인터넷공학부)
  • Published : 2002.01.01

Abstract

In this paper, we made shorter EDT(early decay time) of room reverberation curve using multiple-channel. The speech signal was processed inverse filtering with full-band and sub-band in the basis MINT, and then the multiple-channel adaptive filters were used LMS (Least Mean Square) and NLMS (Normalized Least Mean Square) algorithm. Experimental results, we could get 1/3 of time reduction at 20dB level in the reverberation curve using full-band NLMS when two microphones were used. Also, it is shown that the speech articulation was improved 80% from the test listeners with the speech, which was to shorten EDT by MINT in the subjective assessments using real room impulse response.

본 논문에서는 실내 잔향곡선의 초기감쇠시간을 복수 채널을 사용하여 단축시켰다. 실내에서 수음된 음성신호는 MINT(Multiple - input / output INverse Theorem)에 기초하여 풀밴드와 서브밴드로 역필터링하였으며, 복수 채널의 적응필터는 LMS(least Mean Square)와 NLMS(Normalized Least Mean Square) 알고리즘을 사용하였다. 실험결과 잔향곡선에서 -20 dB까지 감소하는데 걸리는 시간이 2개의 마이크로폰을 사용하였을 때 풀밴드 NLMS에서 약 1/3로 단축됨을 확인하였다. 실제 음장의 전달함수를 사용한 주관평가에서는 80%의 청취자가 MINT에 의해 초기감쇠시간이 단축된 음성의 명료도가 향상되었다고 평가하였다.

Keywords

References

  1. J. Acoust. Soc. Am. v.58 no.4 Intelligibility of speech under nonexponential decay conditions B. Yegnanarayana;B. S. Ramakrishna https://doi.org/10.1121/1.380733
  2. 방송음향 총론 강성훈
  3. Proc. 5th Congr. Acoustica Subjective Reverberation time and its Relation to Sound Decay B. Atai;M. R. Schrocder;G. M. Sessler
  4. J. Acoust. Soc. Am. v.65 no.4 Image method for efficiently simulating small room acoustics J. B. Allen;D. A. Berkley
  5. IEEE Trans. On Acoustics, Speech, and Proce-ssing v.36 no.2 Inverse filltering of room acoustics M. Miyoshi;Y. Kaneda https://doi.org/10.1109/29.1509
  6. ITU-R Draft New Recommendation, Document 10/65 Method for subjective assessment of small impairments in audio system including multichannel sound systems ITU-R
  7. Adaptive Filter Theory S. Haykin