• Title/Summary/Keyword: normal behavior model

Search Result 432, Processing Time 0.028 seconds

Effects of Chengwhabosimtang on depression, anxiety, TH and c-Fos of the brain in the CMS model rats (청화보심탕(淸火補心湯)이 우울증(憂鬱症) 모형동물(模型動物)의 절망행동(絶望行動), 불안(不安) 및 뇌(腦)의 TH 와 c-Fos 발현(發顯)에 미치는 효과(效果))

  • Cho, Chung-Hoon;Kim, Jong-Woo;Kim, Eun-Joo;Kim, Hyun-Joo;Kim, Hyun-Taek;Whang, Wei-Wan
    • Journal of Oriental Neuropsychiatry
    • /
    • v.14 no.2
    • /
    • pp.61-78
    • /
    • 2003
  • Objective : This study was designed to assess the protective effects of Chengwhabosimtang on the animal model of depression, chronic mild stress(CMS). Method : Male Sprague-Dawley rats were used for this experiment. The subjects were divided into 3 groups ( 1. CMS-drug: Chengwhabosimtang administered during CMS treatment, 2. CMS-vehicle: water administered, 3. normal ). After 4 weeks of CMS treatment, they were executed Forced swimming test(FST) and Elevated plus maze. Tyrosine hydroxylase(TH) in ventral tegmental area(VTA) and c-Fos in paraventricular nucleus(PVN) were measured. Result : 1. In FST, CMS-drug group showed significantly decreased immobility behavior. 2. CMS-drug group showed no significantly lower TH level in VTA than CMS-vehicle group. 3. CMS-drug group showed significantly less c-Fos expressed cell bodies in PVN than CMS-vehicle group. 4. In Elevated plus maze, CMS-drug group showed no significantly anxiety. Conclusion : These results suggest that Chengwhabosimtang may have protective antidepressant effects in CMS model rats. And these effects could be explained by the elevated stress-copying behaviors which are related with PVN of hypothalamus and dopaminergic neurons in VTA.

  • PDF

Evaluation on Mechanical Properties of High Strength Light-Weight Concrete with Elevated Temperature and loading (하중조건과 고온에 의한 고강도 경량 콘크리트의 역학적 특성 평가)

  • Kim, Gyu-Yong;Kim, Young-Sun;Choe, Gyeong-Cheol;Park, Hyun-Gil;Lee, Tae-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.723-730
    • /
    • 2011
  • It is very important to experimentally evaluate concrete behavior at elevated temperature because aggregates make up approximately 80 percent of volume in concrete. In this study, an experiment to evaluate mechanical properties of normal weight and light weight concrete of 60 MPa was conducted. Based on loading level of 0, 20 and 40 percent, the tests of 28 days compressive strength, elastic modulus, thermal strain, total strain, and transient creep using ${\phi}100{\times}200mm$ cylindrical specimens at elevated temperature were performed. Then, the results were compared with CEB (Committes Euro-international du Beton) model code. The results showed that thermal strain of light weight concrete was smaller than normal weight concrete. Also, the results showed that compressive strength of light concrete at $700^{\circ}C$ was higher than normal weight concrete and CEB code, similar to that obtained at ambient temperature. Transient creep developed from loading at a critical temperature of $500^{\circ}C$ caused the concrete strains to change from expansion to compression. The transient creep test result showed that internal force was high when the ratio of shrinkage between concrete and aggregate was more influential than thermal expansion.

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models : Verification Tests (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law : 검증실험)

  • Kim, Nam-Sik;Lee, Ji-Ho;Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.35-43
    • /
    • 2004
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. In this study, compressive strength tests are conducted to analyze the equivalent modulus ratio of micro-concrete to normal-concrete. Then, equivalent modulus ratios are divided into multi-phase damage levels, which are basically dependent on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent multi-phase similitude law based on seismic damage levels, is developed. Test specimens, consisted of prototype structures and 1/5 scaled models as a reinforced concrete column, were designed and fabricated based on the equivalent modulus ratios already defined. Finally quasistatic and pseudodynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. It is confirmed that the equivalent multi-phase similitude law proposed in this study could be suitable for seismic performance tests on small-scale models.

Probabilistic Nonlinear Analysis of Semi-Rigid Frames Considering Random Elastic Modulus (탄성계수 불확실성을 고려한 반강접 프레임 구조의 확률적 비선형 거동 해석)

  • Kim, Dae Young;Noh, Hyuk Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.3
    • /
    • pp.191-198
    • /
    • 2013
  • In this paper, the effects of uncertain material constant on the nonlinear behavior of steel frames with semi-rigid joints are examined. As to the probabilistic model, a normal distribution is assumed to simulate the uncertain elastic modulus of steel material. A nonlinear structural analysis program, which can consider both semi-rigidity in joints of the steel frames and uncertainty in the material constant, is developed. Including the geometric, material and connection nonlinearites which are the parameters of nonlinear behavior of steel frames, probabilistic analysis is conducted based on the Monte-Carlo simulation. In the probabilistic analyses, we consider the three different cases for random variables. The deterministic analysis results are shown to be in good agreement with those of the previous research results in the literature. As to the probabilistic analyses, it is observed that the coefficient of variation(COV) of displacements increases as the loading increases, and that the values of COV are dependent on the structural features of the frames.

Mentha arvensis Attenuates Cognitive and Memory Impairment in Scopolamine-treated Mice (Scopolamine 처리에 의한 인지 및 기억력 손상 마우스에서 박하의 효과)

  • Lee, Jihye;Kim, Hye-Jeong;Jang, Gwi Yeong;Seo, Kyung Hye;Kim, Mi Ryeo;Choi, Yun Hee;Jung, Ji Wook
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.1
    • /
    • pp.70-77
    • /
    • 2020
  • Mentha arvensis is used traditional medicine to treat various disorders. In the present study, M. arvensis were extracted by the solid-phase microextraction (SPME) method and analyzed by gas chromatograph-mass spectrometry (GC-MS). We investigated the protective effects and mechanisms of a M. arvensis extract on scopolamine-induced cognitive and memory impairment. Mice were orally pretreated with a M. arvensis extract or normal saline, and then behavior tests were conducted 30 min after scopolamine injection. The antioxidant capacities were analyzed by free radical scavenging (DPPH and ABTS). Acetylcholinesterase (AChE) activity were also measured using Ellman's method ex vivo test. In behavior tests, percent of spontaneous alteration, escape latency and swimming time in target quadrant were improved by the administration of the M. arvensis extract, which suggests that the M. arvensis extract improves memory function in the scopolamine-treated mice model. In addition, M. arvensis extract showed inhibition of the free radical and AChE activity. The results of the present study suggest that the M. arvensis extract ameliorates scopolamine-induced cognitive and memory deficits through the inhibition of free radicals and AChE activity. Therefore, M. arvensis may be a promising neuroprotective agent for management of learning and memory improvements in human dementia patients.

A numerical-experimental evaluation of beams composed of a steel frame with welded and conventional stirrups

  • Goncalves, Wagner L.;Gomes, Guilherme F.;Mendez, Yohan D.;Almeida, Fabricio A.;Santos, Valquiria C.;Cunha, Sebastiao S.Jr.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.27-37
    • /
    • 2018
  • Reinforced concrete structures are widely used in civil engineering projects around the world in different designs. Due to the great evolution in computational equipment and numerical methods, structural analysis has become more and more reliable, and in turn more closely approximates reality. Thus among the many numerical methods used to carry out these types of analyses, the finite element method has been highlighted as an optimized tool option, combined with the non-linear and linear analysis techniques of structures. In this paper, the behavior of reinforced concrete beams was analyzed in two different configurations: i) with welding and ii) conventionally lashed stirrups using annealed wire. The structures were subjected to normal and tangential forces up to the limit of their bending resistance capacities to observe the cracking process and growth of the concrete structure. This study was undertaken to evaluate the effectiveness of welded wire fabric as shear reinforcement in concrete prismatic beams under static loading conditions. Experimental analysis was carried out in order compare the maximum load of both configurations, the experimental load-time profile applied in the first configuration was used to reproduce the same loading conditions in the numerical simulations. Thus, comparisons between the numerical and experimental results of the welded frame beam show that the proposed model can estimate the concrete strength and failure behavior accurately.

Participation of IL-1β in temporomandibular nociception in rats with CFA-induced inflammation

  • Ju, Jin-Sook;Choi, Seung-Ho;Kim, Hye-Jin;Son, Jo-Young;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.125-131
    • /
    • 2016
  • The aim of the present study was to develop an animal model for evaluation of temporomandibular (TMJ) nociception under TMJ inflammation. We also investigated the participation of $IL-1{\beta}$ in inflammation-induced TMJ nociception. Experiments were carried out using male Sprague-Dawley rats. Intra-articular injection of 3% formalin was administered to evaluate hyperalgesia 3 days after CFA injection. Intra-articular injection of 3% formalin did not produce nociceptive behavior in normal rats. Although intra-articular injection of 3 doses of CFA produced TMJ inflammation, only 1:3 diluted CFA produced hyperalgesia when formalin was injected intra-articularly 3 days after CFA injection. Co-administration of IL-1 receptor inhibitor with formalin into the TMJ cavity 3 days after CFA injection was performed. Co-administration of IL-1 receptor inhibitor significantly inhibited formalin-induced hyperalgesia in rats with CFA-induced TMJ inflammation. These results suggested that intra-articular injection of formalin produced hyperalgesia under chronic TMJ inflammation. Moreover, $IL-1{\beta}$ plays an important role in TMJ hyperalgesia under chronic inflammation and blockade of $IL-1{\beta}$ is a potential therapeutic target for inflammatory TMJ pain.

Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers

  • Liang, Di;Wu, Qiong;Lu, Xuemei;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.36 no.1
    • /
    • pp.47-62
    • /
    • 2020
  • In this study, free vibration behavior of trapezoidal sandwich plates with porous core and two graphene platelets (GPLs) reinforced nanocomposite outer layers are presented. The distribution of pores and GPLs are supposed to be functionally graded (FG) along the thickness of core and nanocomposite layers, respectively. The effective Young's modulus of the GPL-reinforced (GPLR) nanocomposite layers is determined using the modified Halpin-Tsai micromechanics model, while the Poisson's ratio and density are computed by the rule of mixtures. The FSDT plate theory is utilized to establish governing partial differential equations and boundary conditions (B.C.s) for trapezoidal plate. The governing equations together with related B.C.s are discretized using a mapping- generalized differential quadrature (GDQ) method in the spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained by GDQ method. Validity of current study is evaluated by comparing its numerical results with those available in the literature. A special attention is drawn to the role of GPLs weight fraction, GPLs patterns of two faces through the thickness, porosity coefficient and distribution of porosity on natural frequencies characteristics. New results show the importance of this permeates on vibrational characteristics of porous/GPLR nanocomposite plates. Finally, the influences of B.C.s and dimension as well as the plate geometry such as face to core thickness ratio on the vibration behaviors of the trapezoidal plates are discussed.

Safety evaluation of dynamic behavior of Korean tilting train (TTX차량의 동역학적 거동의 안정성 평가)

  • Yoon, Ji-Won;Kim, Nam-Po;Kim, Young-Guk;Kim, Seog-Won;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.540-545
    • /
    • 2007
  • The tilting train is able to tilt its body towards the center of the turning radius, preventing roll-over of the train as it runs on a curved rail at high-speed. This train, widely accepted for commercial purpose internationally, is very beneficial in that the operating time is shortened without much capital investment to the infrastructure where there are many curved rails. Over several years, the Korea Railroad Research Institute (KRRI) has developed such a train. In this paper, the safety of the Korean tilting train express (TTX) is investigated using a dynamic simulation model. Since proper safety standards have not been established for the TTX, those for the Korean train express (KTX) is employed to analyze the safety and ride comfort of the TTX. This study is useful in predicting the behavior of the TTX and ride comfort, and conforms that designed TTX is stable enough to satisfy the safety standards. It would be useful to recommend proper normal operating speed and determine the maximum safety speed, according to the result. Furthermore, it would be possible to provide basic reference data when analyzing the dynamic effect of the catenary system and the fatigue of the bogie.

The Association of Anxiety Severity With Health Risk Behaviors in a Large Representative Sample of Korean Adolescents

  • Woo, Kyung Soo;Ji, Yoonmi;Lee, Hye Jeong;Choi, Tae Young
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.32 no.4
    • /
    • pp.144-153
    • /
    • 2021
  • Objectives: Anxiety disorders are the most common psychiatric disorders in adolescents and seem to occur the earliest among all forms of psychopathology. The aim of this study was to investigate the association of anxiety severity with health risk behaviors and mental health in adolescents. Methods: Data from the 2020 Korean Youth Risk Behavior Web-Based Survey were analyzed. A total of 54948 adolescents responded to the 7-item Generalized Anxiety Disorder Scale (GAD-7) for the assessment of their anxiety severity as well as to the mental health and health risk behavior survey. Logistic regression analysis, t tests, and variance analysis of a complex sample general linear model were used to examine the association of anxiety severity with health behaviors and mental health. Results: After statistical adjustment for sociodemographic characteristics, the subjects in the severe anxiety group were significantly more likely to be current smokers (odds ratio [OR]: 2.08, 95% confidence interval [CI]: 1.72-2.50), current drinkers (OR: 1.91, 95% CI: 1.67-2.19), experience habitual substance use (OR: 10.89, 95% CI: 8.22-14.42), have sexual intercourse (OR: 2.10, 95% CI: 1.76-2.51), and have unprotected intercourse (OR: 2.21, 95% CI: 1.67-2.92) than those in the normal group. Anxiety severity negatively correlated with sleep satisfaction and happiness, but positively correlated with stress perception, loneliness, depressive symptoms, and suicidality. Conclusion: Adolescent anxiety is associated with health risk behaviors and poor mental health. Thus, early screening and intervention for anxiety in adolescents could contribute to the management and coping of youth health risk behaviors in the community.