DOI QR코드

DOI QR Code

Probabilistic Nonlinear Analysis of Semi-Rigid Frames Considering Random Elastic Modulus

탄성계수 불확실성을 고려한 반강접 프레임 구조의 확률적 비선형 거동 해석

  • Kim, Dae Young (Department of Civil&Environmental Engineering, Sejong Univ.) ;
  • Noh, Hyuk Chun (Department of Civil&Environmental Engineering, Sejong Univ.)
  • 김대영 (세종대학교 건설환경공학과) ;
  • 노혁천 (세종대학교 건설환경공학과)
  • Received : 2013.02.06
  • Accepted : 2013.04.23
  • Published : 2013.06.30

Abstract

In this paper, the effects of uncertain material constant on the nonlinear behavior of steel frames with semi-rigid joints are examined. As to the probabilistic model, a normal distribution is assumed to simulate the uncertain elastic modulus of steel material. A nonlinear structural analysis program, which can consider both semi-rigidity in joints of the steel frames and uncertainty in the material constant, is developed. Including the geometric, material and connection nonlinearites which are the parameters of nonlinear behavior of steel frames, probabilistic analysis is conducted based on the Monte-Carlo simulation. In the probabilistic analyses, we consider the three different cases for random variables. The deterministic analysis results are shown to be in good agreement with those of the previous research results in the literature. As to the probabilistic analyses, it is observed that the coefficient of variation(COV) of displacements increases as the loading increases, and that the values of COV are dependent on the structural features of the frames.

본 논문에서는 반강접을 고려한 프레임 구조에서 강재 탄성계수의 불확실성이 프레임 구조의 비선형거동에 미치는 영향을 분석하였다. 강재 탄성계수의 불확실성의 확률분포는 정규분포로 모델링 하였으며, 이러한 확률적 물성치를 반강접 프레임의 비선형 거동에 적용할 수 있는 해석 프로그램을 개발하였다. 프레임의 비선형 거동 인수인 기하학적 비선형, 재료적 비선형, 그리고 접합부의 반강접에 의한 비선형 효과를 고려하여, Monte Carlo Simulation에 기반한 확률론적 해석을 수행하였다. 확률론적 해석을 위해 확률변수를 세 종류로 생성하여 사용하였다. 확정론적 해석의 결과는 기존의 연구 결과와 잘 일치하는 결과를 보였다. 확률론적 해석의 경우, 변위의 분산계수는 구조에 작용하는 하중이 증가함에 따라 증가하는 결과를 나타냈으며, 그 값은 프레임구조의 구조적 특성에 영향을 받는 것으로 나타났다.

Keywords

References

  1. Kang, S.B. (1998) Semi-Rigid Connection in Steel Framed Structure, Journal of the Architectural Institute of Korea, 42, pp.40-44.
  2. Kim, S.I., Yoon, C.Y. (2001) A Simplified Nonlinear Analysis of Semi-Rigid Connections in Frames Based on Load Increments, Korean Society of Civil Engineers, 21(2), pp.217-223.
  3. Kim, S.E. (1997) Direct Design of Semi-Rigid Frame, Korean Society of Civil Engineers, 17(1-6), pp.909-916.
  4. Choi. C.K., Noh. H C. (1995) Stochastic FE Analysis of Plate Structure, Journal of the Computational Structural Engineering Institute of Korea, 8(1), pp.127-136.
  5. Chen, S.L., Chui, P.P.T. (2000) Non-Linear static and Cyclic Analysis of Steel Frames with Semi-Rigid Connection, Elsevier, Oxford, p.355.
  6. Chen, W.F., Lui, E.M. (1987) Structural Stability, Elsevier, NewYork, pp.185-187.
  7. Chen, W.F., Lui, E.M. (1992) Stability Design of Steel Frames, CRC Press, Florida, p.380.
  8. Chen, W.F, Sohal, I. (1995) Plastic Design and Second-Order Analysis of Steel Frames, Springer-Verlag New York, p.509.
  9. Chen, W.F., Toma, S. (1992) Advanced Analysis of Steel Frames, CRC Press, Florida, p.195.
  10. Kishi, N., Chen, W.F. (1990) Moment-Rotation Relations of Semi-Rigid Connection with Angle, J. Struct. Eng, 116(7), pp.1813-1834. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:7(1813)
  11. Noh, H.C., Park, T. (2011) Response Variability of Laminate Composite Plates Due to Spatially Random Material Parameter, Computer Methods in Applied Mechanics and Engineering, 200, pp.2397-2406. https://doi.org/10.1016/j.cma.2011.03.020
  12. Papadopoulos V., Soimiris G., Papadrakakis M. (2013) Buckling Analysis of I-section Portal Frames with Stochastic Imperfections, Engineering Structures, 47, pp.54-66. https://doi.org/10.1016/j.engstruct.2012.09.009
  13. Yamazaki, F., Shinozuka, M. (1990) Simulation of Stochastic Fields by Statistical Preconditioning, Journal of Engineering Mechanics, ASCE, 116(2), pp.268-287. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:2(268)

Cited by

  1. Analytical Models of Beam-Column joints in a Unit Modular Frame vol.27, pp.6, 2014, https://doi.org/10.7734/COSEIK.2014.27.6.663