• Title/Summary/Keyword: nonstationary simulation

Search Result 66, Processing Time 0.028 seconds

Simulation of Submicron MOSFET Using Hydrodynamic Model (Hydrodynamic model을 이용한 Submicron MOSFET의 Simulation)

  • 김충원;한백형;김경석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.11
    • /
    • pp.122-131
    • /
    • 1993
  • In this paper, we have developed a submicron Si MOSFET simulator, which is physically based on the hydrodynamic energy transport mode. The simulator was used to investigate the nonstationary transport effects and the transient phenomena in submicron Si MOSFET's. It is found that the velocity overshoot and the carrier heating are dominant transport mechanism near the drain end of the channel and the transient phenomena is more retained in a long channel MOSFET.

  • PDF

Simulation of earthquake records using combination of wavelet analysis and non-stationary Kanai-Tajimi model

  • Amiri, G. Ghodrati;Bagheri, A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.179-191
    • /
    • 2009
  • This paper is aimed at combining wavelet multiresolution analysis and nonstationary Kanai-Tajimi model for the simulation of earthquake accelerograms. The proposed approach decomposes earthquake accelerograms using wavelet multiresolution analysis for the simulation of earthquake accelerograms. This study is on the basis of some Iranian earthquake records, namely Naghan 1977, Tabas 1978, Manjil 1990 and Bam 2003. The obtained results indicate that the simulated records preserve the significant properties of the actual accelerograms. In order to investigate the efficiency of the model, the spectral response curves obtained from the simulated accelerograms have been compared with those from the actual records. The results revealed that there is a good agreement between the response spectra of simulated and actual records.

Design of Time-varying Stochastic Process with Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M.Sami;Lee, Kwon-Soon
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.543-548
    • /
    • 2007
  • We present a dynamic Bayesian network (DBN) model of a generalized class of nonstationary birth-death processes. The model includes birth and death rate parameters that are randomly selected from a known discrete set of values. We present an on-line algorithm to obtain optimal estimates of the parameters. We provide a simulation of real-time characterization of load traffic estimation using our DBN approach.

A New Formulation of Multichannel Blind Deconvolution: Its Properties and Modifications for Speech Separation

  • Nam, Seung-Hyon;Jee, In-Nho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4E
    • /
    • pp.148-153
    • /
    • 2006
  • A new normalized MBD algorithm is presented for nonstationary convolutive mixtures and its properties/modifications are discussed in details. The proposed algorithm normalizes the signal spectrum in the frequency domain to provide faster stable convergence and improved separation without whitening effect. Modifications such as nonholonomic constraints and off-diagonal learning to the proposed algorithm are also discussed. Simulation results using a real-world recording confirm superior performanceof the proposed algorithm and its usefulness in real world applications.

Developing A Stochastical Dynamic Analysis Technique for Structures Using Direct Integration Methods (직접적분법과 확률론적 유한요소법을 이용한 구조물의 확률론적 동적 해석)

  • 이정재
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.54-62
    • /
    • 1994
  • The expanding technique of the Stochastic Finite Element Method(SFEM) is proposed in this paper for adapting direct integration methods in stochastical dynamic analysis of structures. Grafting the direct integration methods and the SFEM together, one can deal with nonlinear structures and nonstationary process problems without any restriction. The stochastical central diffrence and stochastic Houbolt methods are introduced to show the expanding technique, and their adaptabilities are discussed. Results computed by the proposed method (the Stochastic Finite Element Method in Dynamics: SFEMD) for two degree-of-free- dom system are compared with those obtained by Monte Carlo Simulation.

  • PDF

IMM Algorithm with NPHMM for Speech Enhancement (음성 향상을 위한 NPHMM을 갖는 IMM 알고리즘)

  • Lee, Ki-Yong
    • Speech Sciences
    • /
    • v.11 no.4
    • /
    • pp.53-66
    • /
    • 2004
  • The nonlinear speech enhancement method with interactive parallel-extended Kalman filter is applied to speech contaminated by additive white noise. To represent the nonlinear and nonstationary nature of speech. we assume that speech is the output of a nonlinear prediction HMM (NPHMM) combining both neural network and HMM. The NPHMM is a nonlinear autoregressive process whose time-varying parameters are controlled by a hidden Markov chain. The simulation results shows that the proposed method offers better performance gains relative to the previous results [6] with slightly increased complexity.

  • PDF

A Study of Data Compression of Power Quality Disturbance Signal (전력품질 왜곡 신호 압축에 관한 연구)

  • Chung Young Sik;Park Chan Woong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.336-338
    • /
    • 2004
  • This paper introduces a compression algorithm for power quality disturbance signal via the discrete wavelet transform, DWT. Fundamental signal or stationary signal is estimated and then subtracted from a given signal to obtain a difference signal or nonstationary signal. DWT is applied to a difference signal to get coefficients that are thresholded to reduce a number of coefficients. Simulation results show the resonable compression ratio while keep low signal distortion.

  • PDF

Efficient Mixture IMM Algorithm for Speech Enhancement under Nonstationary Additive Colored Noise (시변가산유색잡음하의 음성 향상을 위한 효율적인 Mixture IMM 알고리즘)

  • 이기용;임재열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.42-47
    • /
    • 1999
  • In this paper, a mixture interacting multiple model (MIMM) algorithm is proposed to enhance speech contaminated by additive nonstationary noise. In this approach, a mixture hidden filter model (HFM) is used to model the clean speech and the noise process is modeled by a single hidden filter. The MIMM algorithm, however. needs large computation time because it is a recursive method based on multiple Kalman filters with mixture HFM. Thereby, a computationally efficient implementation of the algorithm is developed by exploiting the structure of the Kalman filtering equation. The simulation results show that the proposed method offers performance gain compared to the previous results in [4,5] with slightly increased complexity.

  • PDF

Speech Enhancement Based on Mixture Hidden Filter Model (HFM) Under Nonstationary Noise (혼합 은닉필터모델 (HFM)을 이용한 비정상 잡음에 오염된 음성신호의 향상)

  • 강상기;백성준;이기용;성굉모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.387-393
    • /
    • 2002
  • The enhancement technique of noise signal using mixture HFM (Midden Filter Model) are proposed. Given the parameters of the clean signal and noise, noisy signal is modeled by a linear state-space model with Markov switching parameters. Estimation of state vector is required for estimating original signal. The estimation procedure is based on mixture interacting multiple model (MIMM) and the estimator of speech is given by the weighted sum of parallel Kalman filters operating interactively. Simulation results showed that the proposed method offers performance gains relative to the previous results with slightly increased complexity.

Stochastic Simulation Model for non-stationary time series using Wavelet AutoRegressive Model

  • Moon, Young-Il;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1437-1440
    • /
    • 2007
  • Many hydroclimatic time series are marked by interannual and longer quasi-period features that are associated with narrow band oscillatory climate modes. A time series modeling approach that directly considers such structures is developed and presented. The essence of the approach is to first develop a wavelet decomposition of the time series that retains only the statistically significant wavelet components, and to then model each such component and the residual time series as univariate autoregressive processes. The efficacy of this approach is demonstrated through the simulation of observed and paleo reconstructions of climate indices related to ENSO and AMO, tree ring and rainfall time series. Long ensemble simulations that preserve the spectral attributes of the time series in each ensemble member can be generated. The usual low order statistics are preserved by the proposed model, and its long memory performance is superior to the direction application of an autoregressive model.

  • PDF