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Abstract

A new normalized MBD algorithm is presented fbr nonstationary convolutive mixtures and its properties/modifications 
are discussed in details. The proposed algorithm normalizes the signal spectrum in the frequency domain to provide 
faster stable convergence and improved separation without whitening effect. Modifications such as nonholonomic 
constraints and of^diagonal learning to the proposed algorithm are also discussed. Simulation results using a real-world 
recording confirm superior perfbrmanceof the proposed algorithm and its usefulness in real world applications.
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I. Introduction Recently, it h거s been shown by the author of this paper

Blind source separation (BSS) is a technique to separate 

original signals from a set of mixtures without any 

information on original signals or a mixing system except 

that original signals are statistically independent each 

other. In case of speech separation in a noisy room, the 

received signal at a microphone would be a reverberant 

and mixed version of sound sources and the mixing is 

convolutive.

Multichannel blind deconvolution (MBD) is one of 

practical methods for convolutive BSS. In [1,2], MBD 

algorithms that employ natural gradient with double-sided 

unmixing filters has been proposed. These MBD 

algorithms, however, suffer from whitening effect of 

output speech, slow convergence speed, a다d poor 

separation.
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that these shortcomings of the existing MBD algorithm 

can be overcome by exploiting spectrum normalization and 

employing right—sided unmixing filters [3], Further, its 

application to speech enhancement in a car has been 

demonstrated [4],

However, the proposed normalized MBD algorithm does 

not remove the whitening problem completely. In this 

paper, this deficiency is perfectly resolved by introducing 

nonholonomic constraints on the MBD algorithm. 

Furthermore, the computational burden is greatly reduced 

by introducing off-diagonal learning which does not use 

diagonal filters. In this case, diagonal filters are absorbed 

into off-diagonal terms. With these modifications, the 

resulting MBD algorithm will provide improved 

performance in terms of quality while reducing the 

computational burden into half (for the case of two 

sources and two sensors).

In this paper, the detail structure, properties, and 

modifications of the newly proposed algorithm are 

148 THE JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA VOL.25, NO4E

mailto:shnam@pcu.ac.kr


investigated and compared with existing MBD algorithms. 

Simulation results using real-world recording are 

presented to confirm the theoretical expectations.

II. Blind Signal Separation

2.1. Blind Signal Separation Problem.
In convolutive mixing with P sources and Q sensors, 

the mixed signal at the sensor j is given by

P 8
顼幻=Z £ 侦闵成-p\j Q

i-1 p=-g I 丄丿

where s^k^i = I, --,P are source signals and 4# is the 

Pth coefficient of the ("机 component (from the source i 

to the sensor j) of the mixing system. Assume that the 

unmixing system is given by w(Z,幻二二…叫(幻z Then 

the ith separated signal is given by

M/ (幻=£ £ WiJ,P (k-p)

J-l p=-B (NJ 

where %，(幻 is the 0J)th component of 두匕(幻. The 

number of sensors Q is assumed to be equal to or greater 

than the number of sources P for successful separation.

One practical method to estimate the unmixing system 

w(z,*)is multichannel blind deconvolution (MBD) which 

minimizes iteratively mutual information between 

separated signals. In [1], the cost function,

— J lo^ldet W^z.^z^dz — (k) (3)

where R(A(*))is a probability density function of %("), 

is minimized with respect to w(幻.Natural gradient (or 

relative gradient [5]) is known to be more efficient for 

this information geometry than standard gradient [6]. The 

update rule using natural gradient is then given by

AW,(幻=竟{礼I-yG)u「(Sp + g)W，(k)}

Here, y(幻 = f(u(幻) where"%) =으;Since the 

unmixing filter 재如 k) is assumed to be doubly infinite, it 

should be approximated to a causal double-sided filter for 

practical implementation.

In [1], the unmixing filters are approximated with 

double-sided filters which are truncated and shifted so 

that the separated signal is given by

U(幻= £wM)x(Sp) (5)

The MBD algorithm with the natural gradient (NGMBD) 

is then presented as

△w,(幻= W，M)-y(SZ)v‘(Sp) (6a)

L
v(幻咨 W却)ud) (6b)

The unmixing system is initialized with W(z,0) = Iz” 

for some 0<p<Z _ if 0<p<L t it converges to a set of 

(Fx0)double-sided finite impulse response (FIR) filters.

The NGMBD algorithm (6a) has equilibrium points

硏乂 (幻%。-이 = 爲可 ⑺

so that the unmixed output signals are whitened. 

Consequently quality of the unmixed speech signal is 

generally poor although it is still intelligible. Furthermore, 

nonstationarity of speech signals yields slow convergence 

rate and poor separation since convergence rate differs at 

each spectral region due to spectral tilt. In [3], it is 

demonstrated that natural gradient still suffers from slow 

convergence fornonstationary signals such as speech. In 

addition, delay in (6b) causes performance degradation.

2.2. A Frequency-Domain Normalized MBD (FNMBD) 
Algorithm.

If the right-sided filters are used, the natural gradient 

updating rule (4) can be written as

△w, (k) = XKi- y( W Q - p+g)}w, Q)
q=0 I 이 
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without any delay and approximations. The filter is 

initialized with w(z,o)= i. The update rule (8) is the same 

as derived in [7]. A major advantage of this alternative 

formulation is accessibility of △x =(i — y『). The gradient 

term AX can be modified for better convergence and 

separation performance.

Notice that MBD algorithms (6) and (8) adopt 

sample~by-sample processing. The MBD algorithm (8) 

can be implemented in the frequency domain using the 

advantage of FFT in an overlap-save manner. It can be 

expressed in the frequency domain, in simplified matrix 

form omitting time-domain constraints, as

△伊也)=卩-"(状/0)广}W%>) ⑼

where b denotes block index, the superscript f the 

quantity in the frequency domain, H the hermitian 

transposition. In addition, i=diag(l,where 1=(1, 

Notice that (9) is actually a time-domain algorithm so 

that forward/inverse Fourier transforms and proper 

time-domain constraints are required to compute linear 

convolution and correlation via circular convolution and 

correlation, respectively. Notice that the algorithm (9) 

with double-sided filters is presented in [2]. However, as 

we will discuss later, algorithms with double—sided filters 

are not as robust as those with right-sided filters in 

real-world applications.

From (9), we can now express a new normalized MBD 

algorithm by normalizing the signal spectrum and 

(U%))广 in the frequency domain. In this paper, only the 

algorithm with right-sided filters is considered. (Frame 

packing and corresponding time-domain constraints for 

the double-sided filters can be found in [8].)

First, define the signal with normalized power spectrum 

as follows：

恥)= yW)0 死丽 (10a)

(b) = af 例이4,0) (10b)

where 0 denotes the component-wise division and

pq)= (i-/)p*-i)+/|yW)|2 (11a)

乌(幻 = (1一7，)乌(3-1) + 小,(이2 (Hb)

where Let F and F-1 be the Fourier transform and 

the inverse Fourier transform matrices, respectively. 

Further, let % be the matrix that discards all the 

samples except the first L samples. Then the right hand 

side of (9) can be converted into normalized form with 

proper time-domain constraints as follows：

△：〉4岡=诫厂*%"{沁(頌*}. (㈤

△V%(b) = FP/i恆 qiw小码싸 (12b)

where O denotes the component-wise multiplication. The 

time-domain constraint Lin (12a) is to preserve only 

the first L cross-correlation lags that are computed 

using circular correlation. To obtain the unbiased L 

cross-correlation lags between 乂0) and 七⑴，the 

support of y」0) should be shorter than the support of 

u0) by L samples so that the first 2L samples of ”0) 

are zero. That is,

y,0) = P(),gf(u,(幻) (13)

For this reason, the frame length N should satisfy 

N>4L. On the other hand, the time-domain constraint 

此,。in (12b) is to limit the filter length to L. Notice that 

(12b) is a convolution of two sequences having supports L 

and aliasing does not occur if N>4L. Owing to 

time-domain constraints in (12a) and (12b), the 

algorithm does not suffer from the frequency permutation 

problem.

Using the same notational convention as in (9), the 

resulting frequency-domain normalized MBD (FNMBD) 

algorithm can be expressed in a simplified form as

AW，(幻= {T-(幻(/©))& A/20)} w，(幻(14)

where AU(Z?) are diagonal matrices with diagonal

elements %(幻 and %(幻，respectively. Due to spectral 

normalization employed in (14), the spectral tilt is 
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effectively compensated so that the stability of the 

algorithm is greatly enhanced.

Notice that the off-diagonal terms of "9)(/(幻)"in 

(14) is normalized by the power of two sources. This is 

quite different from the method presented in [12,13] 

where the off-diagonal terms are normalized with respect 

to just single source.

III. Properties and Modifications of the 
FNMBD Algorithm

3,1. Properties.
In [7], stability analysis of the algorithm (14) has been 

accomplished by assuming that signals are not only 

mutually independent but also i.i.d. temporally. Likewise 

stability of the FNMBD algorithm can be treated indirectly 

by considering stability of the corresponding time-domain 

algorithm. In the corresponding time-domain algorithm, 

y(*) and u(*) are replaced by yW and 祁),respectively, 

having normalized spectrum. In fact, flattened spectrum of 

瓦。)reinforces the i.i.d. assumption employed in the 

stability analysis so that stability of the FNMBD algorithm 

(14) is justified.

The FNMBD algorithm has equilibrium points

硏评0网(硏*, (15)

Unlike (7), equilibrium points (15) do not impose any 

compulsory constraints on the spectra unmixed signals 

since yf 0) and (") are already whitened.

Another good property of the FNMBD algorithm is 

equivariant property [5], Assume that mixing and 

unmixing systems have the same supports. Post-multiplying 

the mixing filter Az(h)to both sides of (14) yields

源/(3) = {「7%，)"(幻(¥0))小*2(幻}皿(幻 (16)

where H，(B) = W，⑴A'(幻.Dependency on the mixing 

matrix is absorbed as an initial condition so that 

separation is independent of the mixing system.

Furthermore, dependency on the input signal power is 

removed through normalization so that the FNMBD 

algorithm provides uniform convergence regardless of the 

input signal as well as the mixing system. Therefore, 

convergence of the FNMBD algorithm depends only on the 

step size and the filter length.

3.2. Modifications.
As pointed out earlier, the frame length n should be 

larger than 4L to compute L unbiased cross-correlation 

lags in (12a). For the double-sided filters, however, 2L 

cross-correlations of lag from -(£ + 1) to L are required. 

If we omit this constraint, the cross-correlations are 

biased but more samples of u(幻 are utilized.

The nonholonomic constraint is that diagonal 

components of AX = l-yur being zero [11]. The 

nonholonomic constraint prevents the gradient terms from 

being affected by time-varying signal powers. The 

nonholonomic constraint is therefore proposed as a 

solution to the whitening effect. Nevertheless, the exact 

nonholonomic constraint is not possible to implement in 

the NGMBD algorithm since AX is not accessible due to 

backward filtering. On the other hand, the FNMBD 

algorithm is approximatelynonholonomic, and exact 

nonholonomicity can be achieved in the FNMBD algorithm 

by setting △X，(&) = 0.

In general, all (^7) components of the filter are learned 

and utilized in separating the signals. In off-diagonal 

learning, however, only diagonal components of the filter 

are fixed to unit impulses and only off-diagonal 

components are learned. Diagonal components are in 

factabsorbed in the off-diagonal components since there 

exists inherit indeterminacy to arbitrary scaling and 

filtering. However, off-diagonal learning provides 

computational saving. This savings can be significant if it 

is combined with nonholonomic constraints for 户=Q = 2. 

Consider the off-diagonal learning of the gradient awz(z)) 

in (12a) and (12b) with the nonholonomic constraints. For 

the 2x2 case, off-diagonal components of the filter are 

rewritten as

AW,{(£>) = -AX*3) = FPt0F-'{yf(Z>) e (u(⑴)*} (奂)
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(17b)

Notice that computation (12b) is not required and the 

computational burden is reduced to nearly half. However, 

the modified update rule (17) does not have natural 

gradient.

IV. Simulations

4.1. Simulation Setup.
Real world recordings were obtained in a normal office 

(3.2m x 7.8m x 3m) which has a reverberation time 

T60=500ms Using two microphones. Speech signals are 

played back at the speakers located at -30° and 40° with 

respect to the normal direction of the microphone array. 

The distance between the microphone and speaker is set 

to 70 cm and the two microphones are 12 cm apart each 

other. The mixed signals are recorded at 16 kHz sampling 

rate. As a performance measure, the signal-to- 

interference ratio (SIR), defined by the ratio of the signal 

power of the target signal from that of the jammer signal, 

is used.

4.2. Performance of the FNMBD Algorithm.
To see the effects of spectrum normalization and 

right-sided filters, we compared the proposed FNMBD 

algorithm with existing MBD algorithms as shown in Fig. 

1. The filter length is set to 1024 for all algorithms. The 

step size is chosen differently for each algorithm to get 

proper stable convergence and the best SIR. The NGMBD 

algorithm ⑹ is initialized with w(z,o) = iz*L/2 and w(z,0) = l 

for double-sided (bidirectional) and i祯it-sided (unidirectional) 

filters, respectively. The double-sided NGMBD algorithm 

performs poorer than the right-sided case. This is due to 

bias presented in the double-sidedfilters. The MBD 

algorithm (9) with nonholonomic constraints performs 

better than the right-sidedNGMBD since there is no delay 

in (9). Finally, the FNMBD algorithm with right-sided 

filters (14) performs better than the MBD algorithm (9) 

with nonholonomic constraints. The result clearly confirms 

the advantage of spectrum normalization and right-sided 

filters.

We compared the performance of the FNMBD with its 

modified versions (i) the FNMBD with nonholonomic 

constraints (ii) the FNMBD with nonholonomic plus 

off-diagonal learning. From Fig. 2, we can see that the 

SIR of the FNMBD algorithm is continuously increasing. It 

implies that the whitening effect is still remaining 

although it is reduced significantly. As nonholonomic 

constraints applied, however, the learning stops after 

reaching its equilibrium state so that there is no whitening 

occurs any longer. The algorithms becomes slower slightly 

as off-diagonal learning is used.
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Fig. 1. Performance of the F샤MBD algorithm and other existing 
MBD algorithms.
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Fig. 2. Performance of the FNMBD algorithm and its modified 
versions.
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V. Conclusions

A new normalized MBD algorithm has been presented 

for nonstationary convolutive mixtures and its properties 

have been discussed in details. The proposed algorithm 

uses right-sided filters combined with spectrum 

normalization. As a result, it provides faster stable 

convergence and improved separation while relieving the 

whitening effect. Modifications such as exact 

nonholonomic constraints and off-diagonal learning to the 

proposed algorithm also have been discussed. These 

modifications provide better performance while reducing 

the computational burden greatly. Simulation results using 

real-world recordings confirm superior performance of 

the proposed algorithm and its usefulness in real world 

applications.
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