• Title/Summary/Keyword: nonparametric tests

Search Result 132, Processing Time 0.018 seconds

NONPARAMETRIC ONE-SIDED TESTS FOR MULTIVARIATE AND RIGHT CENSORED DATA

  • Park, Hyo-Il;Na, Jong-Hwa
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.4
    • /
    • pp.373-384
    • /
    • 2003
  • In this paper, we formulate multivariate one-sided alternatives and propose a class of nonparametric tests for possibly right censored data. We obtain the asymptotic tail probability (or p-value) by showing that our proposed test statistics have asymptotically multivariate normal distributions. Also, we illustrate our procedure with an example and compare it with other procedures in terms of empirical powers for the bivariate case. Finally, we discuss some properties of our test.

Nonparametric Procedures for Finding Minimum Effective Dose in a One-Way Layout

  • Kim, Hyeonjeong;Kim, Dongjae
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.693-701
    • /
    • 2002
  • When the lowest dose level compared with zero-dose control has significant difference in effect, it is referred as minimum effective dose (MED). In this paper, we discuss several nonparametric methods for finding MED using updated rank at each sequential test step in small sample size and suggest new nonparametric procedures based on placement. Monte Carlo Simulation is adapted to compare power and Familywise Error Rate(FWE) of the new procedures with those of discussed nonparametric tests for finding MED.

Review of Nonparametric Statistics by Neyman-Pearson Test and Fisher Test (Neyman-Pearson 검정과 Fisher 검정에 의한 비모수 통계의 고찰)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.04a
    • /
    • pp.451-460
    • /
    • 2008
  • This paper reviews nonparametric statistics by Neyman-Pearson test and Fisher test. Nonparametric statistics deal with the small sample with distribution-free assumption in multi-product and small-volume production. Two tests for various nonparametric statistic methods such as sign test, Wilcoxon test, Mann-Whitney test, Kruskal-Wallis test, Mood test, Friedman test and run test are also presented with the steps for testing hypotheses and test of significance.

  • PDF

Permutation tests for the multivariate data

  • Park, Hyo-Il;Kim, Ju-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1145-1155
    • /
    • 2007
  • In this paper, we consider the permutation tests for the multivariate data under the two-sample problem setting. We review some testing procedures, which are parametric and nonparametric and compare them with the permutation ones. Then we consider to try to apply the permutation tests to the multivariate data having the continuous and discrete components together by choosing some suitable combining function through the partial testing. Finally we discuss more aspects for the permutation tests as concluding remarks.

  • PDF

A Study of Non-parametric Statistical Tests to Analyze Trend in Water Quality Data (수질자료의 추세분석을 위한 비모수적 통계검정에 관한 연구)

  • Lee, Sang-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.2
    • /
    • pp.93-103
    • /
    • 1995
  • This study was carried out to suggest the best statistical test to analyze the trend in monthly water quality data. Traditional parametric tests such as t-test and regression analysis are based on the assumption that the underlying population has a normal distribution and regression analysis additionally assumes that residual errors are independent. Analyzing 9-years monthly COD data collected at Paldang in Han River, the underlying population was found to be neither normal nor independent. Therefore parametric tests are invalid for trend detection. Four Kinds of nonparametric statistical tests, such as Run Test, Daniel test, Mann-Kendall test, and Time Series Residual Analysis were applied to analyze the trend in the COD data, Daniel test and Mann-Kendall test indicated upward trend in COD data. The best nonparametric test was suggested to be Daniel test, which is simple in computation and easy to understand the intuitive meaning.

  • PDF

Nonparametric Tests for Grouped K-Sample Problem

  • Park, Hyo-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.409-418
    • /
    • 2006
  • We propose a nonparametric test procedure for the K-sample problem with grouped data. We construct the test statistics using the scores derived for the linear model based on likelihood ratio principle and obtain asymptotic distribution. Also we illustrate our procedure with an example. Finally we discuss some concluding remarks.

Depth-Based rank test for multivariate two-sample scale problem

  • Digambar Tukaram Shirke;Swapnil Dattatray Khorate
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.227-244
    • /
    • 2023
  • In this paper, a depth-based nonparametric test for a multivariate two-sample scale problem is proposed. The proposed test statistic is based on the depth-induced ranks and is thus distribution-free. In this article, the depth values of data points of one sample are calculated with respect to the other sample or distribution and vice versa. A comprehensive simulation study is used to examine the performance of the proposed test for symmetric as well as skewed distributions. Comparison of the proposed test with the existing depth-based nonparametric tests is accomplished through empirical powers over different depth functions. The simulation study admits that the proposed test outperforms existing nonparametric depth-based tests for symmetric and skewed distributions. Finally, an actual life data set is used to demonstrate the applicability of the proposed test.

Tests of Factor Effect Using Saturated Design in $K^n$ Factorial Design ($K^n$ 요인배치법에서 포화실험에 의한 요인효과의 검정)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.04a
    • /
    • pp.295-299
    • /
    • 2008
  • This paper discusses tests of factor effect or contrast by the use of saturated design $k^n$ factorial design. The nine nonparametric rank measures in normality test using normal probability pot are proposed. Length's PSE(Pseduo Standard Error) test [4] which relies on the concept of effect sparsity is also introduced and extended to the margin of error(ME) and Simultaneous margin of error(SME).

  • PDF

Nonparametric test for cointegration rank using Cholesky factor bootstrap

  • Lee, Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.587-592
    • /
    • 2016
  • It is a long-standing issue to correctly determine the number of long-run relationships among time series processes. We revisit nonparametric test for cointegration rank and propose bootstrap refinements. Consistent with model-free nature of the tests, we make use of Cholesky factor bootstrap methods, which require weak conditions for data generating processes. Simulation studies show that the original Breitung's test have difficulty in obtaining the correct size due to dependence in cointegrated errors. Our proposed bootstrapped tests considerably mitigate size distortions and represent a complementary approach to other bootstrap refinements, including sieve methods.

A Simple Nonparametric Test of Complete Independence

  • Park, Cheol-Yong
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.411-416
    • /
    • 1998
  • A simple nonparametric test of complete or total independence is suggested for continuous multivariate distributions. This procedure first discretizes the original variables based on their order statistics, and then tests the hypothesis of complete independence for the resulting contingency table. Under the hypothesis of independence, the chi-squared test statistic has an asymptotic chi-squared distribution. We present a simulation study to illustrate the accuracy in finite samples of the limiting distribution of the test statistic. We compare our method to another nonparametric test of complete independence via a simulation study. Finally, we apply our method to the residuals from a real data set.

  • PDF