• Title/Summary/Keyword: nonparametric statistics

Search Result 425, Processing Time 0.032 seconds

Review of Nonparametric Statistics by Neyman-Pearson Test and Fisher Test (Neyman-Pearson 검정과 Fisher 검정에 의한 비모수 통계의 고찰)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.04a
    • /
    • pp.451-460
    • /
    • 2008
  • This paper reviews nonparametric statistics by Neyman-Pearson test and Fisher test. Nonparametric statistics deal with the small sample with distribution-free assumption in multi-product and small-volume production. Two tests for various nonparametric statistic methods such as sign test, Wilcoxon test, Mann-Whitney test, Kruskal-Wallis test, Mood test, Friedman test and run test are also presented with the steps for testing hypotheses and test of significance.

  • PDF

Statistical Bias and Inflated Variance in the Genehunter Nonparametric Linkage Test Statistic

  • Song, Hae-Hiang;Choi, Eun-Kyeong
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.373-381
    • /
    • 2009
  • Evidence of linkage is expressed as a decreasing trend of the squared trait difference of two siblings with increasing identical by descent scores. In contrast to successes in the application of a parametric approach of Haseman-Elston regression, notably low powers are demonstrated in the nonparametric linkage analysis methods for complex traits and diseases with sib-pairs data. We report that the Genehunter nonparametric linkage statistic is biased and furthermore the variance formula that they used is an inflated one, and this is one reason for a low performance. Thus, we propose bias-corrected nonparametric linkage statistics. Simulation studies comparing our proposed nonparametric test statistics versus the existing test statistics suggest that the bias-corrected new nonparametric test statistics are more powerful and attains efficiencies close to that of Haseman-Elston regression.

Implementation of Nonparametric Statistics in the Non-Normal Process (비정규 공정에서 비모수 통계의 적용)

  • Choe, Seong-Un
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.573-577
    • /
    • 2012
  • Based on latest research, the parametric quality statistics cannot be used in non-normal process with demand pattern of many-variety and small-volume, since it involves extremely small sample size. The research proposes nonparametric quality statistics according to the number of lot or batch in the non-normal process. Additionally, the nonparametric Process Capability Index (PCI) is used with 14 identified non-normal distributions.

  • PDF

Small Area Estimation via Nonparametric Mixed Effects Model

  • Jeong, Seok-Oh;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.457-464
    • /
    • 2012
  • Small area estimation is a statistical inference method to overcome the large variance due to the small sample size allocated in a small area. Recently some nonparametric estimators have been applied to small area estimation. In this study, we suggest a nonparametric mixed effect small area estimator using kernel smoothing and compare the small area estimators using labor statistics.

Comparison of Nonparametric Maximum Likelihood and Bayes Estimators of the Survival Function Based on Current Status Data

  • Kim, Hee-Jeong;Kim, Yong-Dai;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.111-119
    • /
    • 2007
  • In this paper, we develop a nonparametric Bayesian methodology of estimating an unknown distribution function F at the given survival time with current status data under the assumption of Dirichlet process prior on F. We compare our algorithm with the nonparametric maximum likelihood estimator through application to simulated data and real data.

Estimation of Mean Residual Life under Random Censorship Model Using Partial Moment Approximation

  • Park, Byung Gu;Lee, Jae Man;Cha, Young Joon
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.3
    • /
    • pp.111-118
    • /
    • 1994
  • In this paper we propose a parametric and a nonparametric small sample estimators for the mean residual life (MRL) under the random censorship model using the partial moment approximation. We also compare the proposed nonparametric estimator with the well-known nonparametric MRL estimator based on Kaplan-Meier estimator of the survival function, and present the efficiency of the nonparametric method relative to the Weibull model for small samples.

  • PDF

Comparisons between Goodness-of-Fit Tests for ametric Model via Nonparametric Fit

  • Kim, Choon-Rak;Hong, Chan-Kon;Jeong, Mee-Seon
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.3
    • /
    • pp.39-46
    • /
    • 1996
  • Most of existing nonparametric test statistics are based on the residuals which are obtained by regressing the data to a parametric model. In this paper we compare power of goodness-of-fit test statistics for testing the (null)parametric model versus the (alternative) nonparametric model.

  • PDF

Nonparametric Bayesian Estimation for the Exponential Lifetime Data under the Type II Censoring

  • Lee, Woo-Dong;Kim, Dal-Ho;Kang, Sang-Gil
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.417-426
    • /
    • 2001
  • This paper addresses the nonparametric Bayesian estimation for the exponential populations under type II censoring. The Dirichlet process prior is used to provide nonparametric Bayesian estimates of parameters of exponential populations. In the past, there have been computational difficulties with nonparametric Bayesian problems. This paper solves these difficulties by a Gibbs sampler algorithm. This procedure is applied to a real example and is compared with a classical estimator.

  • PDF

Multivariate Test based on the Multiple Testing Approach

  • Hong, Seung-Man;Park, Hyo-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.821-827
    • /
    • 2012
  • In this study, we propose a new nonparametric test procedure for the multivariate data. In order to accommodate the generalized alternatives for the multivariate case, we construct test statistics via-values with some useful combining functions. Then we illustrate our procedure with an example and compare efficiency among the combining functions through a simulation study. Finally we discuss some interesting features related with the new nonparametric test as concluding remarks.

The Analysis of power of the Test Statistics for the Randomized Block Design (확률화 블록 실험계획 모형에서 검정 통계량들의 검정력 분석)

  • 배현웅;김제영
    • Journal of the military operations research society of Korea
    • /
    • v.27 no.2
    • /
    • pp.124-133
    • /
    • 2001
  • The purpose of this study is investigate the differences among parametric and nonparametric test statistics for the tree alternative hypothesis in the randomized block design. As the results, it was found that there was no large differences among parametric and nonparametric test statistics in power when the block sizes were larger, and Hollander's statistic had better power than other nonparametric test statistics. It is recommended that Hollander's test statistic is more useful method when we have no information about the distribution of population.

  • PDF