• Title/Summary/Keyword: nonminimum phase systems

Search Result 51, Processing Time 0.038 seconds

Application of dynamic matrix control (Dynamic Matrix Control의 응용)

  • Moon, Il;Eyo, Young-Koo;Song, Hyung-Keun;Park, Won-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.652-657
    • /
    • 1987
  • The Dynamic Matrix Control(DMC) technique was applied to nonlinear and nonminimum phase system. System model was identified by using Least Square method. Desired output trajectory was prespecified and input suppression parameter was also introduced. It was shown that DMC technique worked with great success in solving both nonminimum phase system and nonlinear system.

  • PDF

A New Sliding Mode Control for Set-point Regulation of Second Order LTI Nonminimum Phase Systems (이차 선형 시불변 비최소 위상 시스템의 설정값 조정을 위한 새로운 슬라이딩 모드 제어)

  • Lee, Ha-Joon;Park, Cheol-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.990-999
    • /
    • 2007
  • We deal with second order NMP(Non-Minimum Phase) systems which are difficult to control with conventional methods because of their inherent characteristics of undershoot. In such systems, reducing the undesirable undershoot phenomenon makes the response time of the systems much longer. Moreover, it is impossible to control the magnitude of undershoot in a direct way and to predict the response time. In this paper, we propose a novel two sliding mode control scheme which is capable of determining the magnitude of undershoot and thus the response time of NMP systems a priori. To do this, we introduce two sliding lines which are in charge of control in turn. One is used to stabilize the system and achieve asymptotic regulation eventually like the conventional sliding mode methods and the other to stably control the magnitude of undershoot from the beginning of control until the state meets the first sliding line. This control scheme will be proved to have an asymptotic regulation property. The computer simulation shows that the proposed control scheme is very effective and suitable for controlling the second order NMP system because it can decide the magnitude of undershoot in a direct and stable way and reduce the response time compared with the conventional ones.

A Study on Identification of Nonminimum Phase Stable System from Partial Impulse Response Sequences

  • Lee, Won-Cheol;Bae, Myung-Jin;Im, Sung-Bin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1E
    • /
    • pp.45-58
    • /
    • 1996
  • This paper addresses the problem of identifying the class of all stable system transfer functions that interpolate the given partial impulse response sequence. In this context, classical Pade approximations that are also stable, are shown to be a special case of this general formulation. The theory developed in this connection is utilized to obtain a new criterion for determining the model order and system parameters for rational systems, and, further, to generate nonminimum phase optimal stable rational approximatinos of nonrational systems from its impulse response sequence.

  • PDF

Receding horizon LQG controller with FIR filter

  • Yoo, Kyung-Sang;Shim, Jae-Hoon;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.193-196
    • /
    • 1992
  • When there exist parameter uncertainty, modelling errors and nonminimum phase zeros in control object system. the stability robustness of conventional LQG and LOG/LTR methods are not satisfactory[2, 8]. Since these methods are performed on the infinite horizon, it is very hard to establish exact design parameters and thus they have lots of problems to be applied to real systems, So in this paper we propose RHLQG/FIRF optimal controller which has robust stability against parameter uncertainty, nonminimum phase zeros and modelling errors. This method uses only the information around at present and therefore shows good performance even when we do not know exact design parameters. We here compare LQG and LQG/LTR method with RHLQG/FIRF controller and exemplify that RHLQG/FIRF controller has better robust stability performance via simulations.

  • PDF

Blind identification of nonminimum phase FIR systems from second-order statistics and absolute mean (2차 통계값과 절대평균을 이용한 비최소 위상 FIR 시스템의 미상 식별)

  • 박양수;박강민;송익호;김형명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.357-364
    • /
    • 1996
  • This paper presents a new blind identification method of nonminimum phase FIR systems without employing higher-order statistics. It is based on the observation that the absolute mean of a second-order white sequence can measure the higher-order whiteness of the sequence. The proposed method may be a new alternative way to the higher-order statistics approaches. Some computer simulations show that the absolute mean is exactly estimated and the proposed method can overcome the disadvantages of the higher-order statistics approaches.

  • PDF

The Design of Adaptive Controller for Nonminimum-Phase System using Approximate Inverse System (근사화 inverse 시스템을 사용한 비최소 위상플랜트의 적응제어기 설계)

  • Oh, Hyun-Cheol;Kim, Yoon-Sang;Jwa, Jong-Cheol;Lee, Jae-Chun;Kim, Jae-Il;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.575-577
    • /
    • 1997
  • This paper presents a approach to the adaptive control of nonminimum-phase continuous-time systems. It is shown that pole-zero cancellations can be avoided by using approximate inverse systems. The computer simulation results are presented to illustrate the effectiveness of the proposed method.

  • PDF

Model reference adaptive controller design for missiles with nonminimum-phase characteristics (비최소 위상 특성을 갖는 유도탄의 기준 모델 적응 제어기 설계)

  • 김승환;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.624-629
    • /
    • 1993
  • In this paper, a model reference adaptive control scheme is applied to the normal acceleration controller for missiles with nonminimum-phase characteristics. The proposed scheme has an auxiliary compensator, an identifier of plant parameters and a feedback control law. First, plant parameters are estimated by the identifier and based the parameter estimates the coefficients of the compensator are calculated so that the estimated plant model with the compensator becomes minimum-phase. In this calculation, Nehari Algorithm is used. Parameters of the control law are then updated so that the extended plant model follows the given reference model. It is shown that the performance of the designed controller is satisfied via computer simulations.

  • PDF

Direct Adaptive Control of Nonminimum Phase Systgems based on PID Structures (PID 구조를 기초로 한 비최소 위상 시스템의 직접적응제어)

  • Kim, Jong-Hwan;Choi, Keh-Kun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.895-901
    • /
    • 1986
  • This paper presents direct adaptive controllers for single-input single-output nonminimum phase systems based on PID structures. Also, characteristics of these schemes are compared, and convergence properties are considered. In these schemes, controller parameters are estimated from the least-square algorithm and some additional auxiliary parameters are obtained from the proposed polynomial identity which is derived from the pole placement equation and the Bezout identity. The effectiveness of these schemes is demonstrated by computer simulation that has been carried out for a very difficult example.

  • PDF

Robust adaptive IMC controller for a class of nonminimum phase stochastic systems (비최소 위상 확률 시스템을 대상으로 한 견실한 적응 IMC 제어기)

  • 최종호;김호찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.139-144
    • /
    • 1993
  • In this paper, a robust reduced order adaptive controller is proposed based on Internal Model Control(IMC) structure for stochastic linear stable systems. The concept of gain margin is utilized to make the adaptive IMC controller robust. We prove the stability of the proposed adaptive IMC system for stable plants under the assumption that upper bounds for system orders are known. Simulation results show that the proposed method has good performance and stability robustness.

  • PDF