• Title/Summary/Keyword: nonlinearity compensation

Search Result 95, Processing Time 0.04 seconds

A Technique Combining the Path Calibration and Nonlinear Compensation in a Transmitting Antenna Array System (송신 배열 안테나의 경로 보정과 비선형 보상의 결합 기술)

  • Lim, Sun-Min;Kim, Min;Eun, Chang-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.5
    • /
    • pp.27-36
    • /
    • 2012
  • We propose a new scheme combining the calibration of the path imperfections and the compensation of HPA nonlinearity in the downlink OFDM smart antenna systems. We use a two term third-order polynomial (without second-order term) and the indirect learning architecture for calibration and compensation, to make each path of the antenna array have equal characteristics. We test our scheme with computer simulations. The result shows that, with the addition of only one third-order term, the adverse nonlinear effects as well as the those of linear imperfections can be effectively compensated.

A Technique Combining the Nonlinear Compensation and the Path Calibration by Using the Feedforward Scheme in Transmitting Array Antenna Systems (피드포워드 방식을 이용한 송신 배열 안테나의 비선형 보상과 경로 보정의 결합 기술)

  • Kim, Min;Eun, Chang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.197-204
    • /
    • 2012
  • We propose a new scheme combining the compensation of HPA nonlinearity and the calibration of the path imperfections in the downlink OFDM smart antenna systems. We use a two term third-order polynomial (without second-order term) and the feedforward method for compensation and calibration to make each path of the antenna array have equal characteristics. Since the proposed scheme does not alter the base-band signal, it can be applied to the smart antenna system independently of the base-band signal processing section. The result of computer simulations shows that, with the addition of only one third-order term, the adverse nonlinear effects can be effectively compensated, and the those of linear imperfections can be calibrated as well.

Effective Compensation of the Distorted 1.12 Tbps WDM Signals Using Optimization of Total Dispersion

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.377-381
    • /
    • 2007
  • Nonlinear effects and chromatic dispersion are the main causes of pulse degradation in high bit-rate WDM transmission systems and several architectures have been proposed to compensate them by means of optical phase conjugation. In this paper, a new method to exploit an optical phase conjugator (OPC) for nonlinearity and dispersion cancellation is disclosed. The proposed method is using optimal total dispersion of each fiber sections and it is simpler than those previously described in literature. Power penalty between WDM channels and the maximum launch power in $28{\times}40$ Gbps WDM transmission system designed by optimal total dispersion are more decreased and more increased than those in the conventional WDM transmission system with OPC, respectively. Furthermore, optimal total dispersion proposed in this research should provide the flexible design of WDM system, which less depends on OPC position.

Nonlinearity error compensation in heterodyne laser interferometer using recursive WLS (순환적 WLS를 이용한 헤테로다인 레이저 간섭계의 비선형 오차 보정)

  • Kim, Dae-Hyun;Heo, Gun-Haeng;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1751-1752
    • /
    • 2008
  • The heterodyne laser interferometer has a nano-meter scale resolution. However, the unwanted nonlinearity error caused from frequency-mixing limits the ultra-precise resolution. In this paper, we propose a recursive WLS algorithm to improve the resolution of heterodyne laser interferometer. Some experimental results show an effectiveness of the recursive WLS algorithm in nano-meter scale resolution.

  • PDF

Fuzzy control for geometrically nonlinear vibration of piezoelectric flexible plates

  • Xu, Yalan;Chen, Jianjun
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.163-177
    • /
    • 2012
  • This paper presents a LMI(linear matrix inequality)-based fuzzy approach of modeling and active vibration control of geometrically nonlinear flexible plates with piezoelectric materials as actuators and sensors. The large-amplitude vibration characteristics and dynamic partial differential equation of a piezoelectric flexible rectangular thin plate structure are obtained by using generalized Fourier series and numerical integral. Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear structural system, which combines the fuzzy inference rule with the local linear state space model. A robust fuzzy dynamic output feedback control law based on the T-S fuzzy model is designed by the parallel distributed compensation (PDC) technique, and stability analysis and disturbance rejection problems are guaranteed by LMI method. The simulation result shows that the fuzzy dynamic output feedback controller based on a two-rule T-S fuzzy model performs well, and the vibration of plate structure with geometrical nonlinearity is suppressed, which is less complex in computation and can be practically implemented.

Robust Sensorless Sliding Mode Flux Observer for DTC-SVM-based Drive with Inverter Nonlinearity Compensation

  • Aimad, Ahriche;Madjid, Kidouche;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.125-134
    • /
    • 2014
  • This paper presents a robust and speed-sensorless stator flux estimation for induction motor direct torque control. The proposed observer is based on sliding mode approach. Stator electrical equations are used in the rotor orientation reference frame to eliminate the observer dependence on rotor speed. Lyapunov's concept for systems stability is adopted to confine the observer gain. Furthermore, the sensitivity of the observer to parameter mismatch is recovered with an adaptation technique. The nonlinearities of the pulse width modulation voltage source inverter are estimated and compensated to enhance stability at low speeds. Therefore, a new method based on the model reference adaptive system is proposed. Simulation and experimental results are shown to verify the feasibility and effectiveness of the proposed algorithms.

A Nonlinear Filtered-X LMS Algorithm for the Nonlinear Compensation of the Secondary Path in Active Noise Control (능동 소음 제어 시스템의 2차 경로 비선형 특성을 보상하기 위한 적응 비선형 Filtered-X Least Mean Square (FX-LMS) 알고리듬)

  • Jeong, I.S.;Kim, D.H.;Nam, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.565-567
    • /
    • 2004
  • In active noise control (ANC) systems, the convergence behavior of the conventional Filtered-X Least Mean Square (FXLMS) algorithm may be affected by nonlinear distortions in the secondary path (e.g., in the power amplifiers, loudspeakers, transducers, etc.), which may lead to degradation of the error-reduction performance of the ANC systems. In this paper, a stable FXLMS algorithm with fast convergence is proposed to compensate for undesirable nonlinear distortions in the secondary-path of ANC systems by employing the Volterra filtering approach. In particular, the proposed approach is based on the utilization of the conventional P-th order inverse approach to nonlinearity compensation in the secondary path of ANC systems. Finally, the simulation results showed that the proposed approach yields a better convergence behavior In the nonlinear ANC systems than the conventional FXLMS.

  • PDF

Controller design for compensation of nonlinear harmonic distortion in direct-radiator loudspeakers (직접 방사형 스피커의 비선형 고조파 왜곡 보상 제어기의 설계)

  • 김윤선;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.399-402
    • /
    • 1996
  • The electrodynamic loudspeakers should have a wide dynamic range to reproduce various sound levels. When the input signal is small, the radiated sound from the loudspeaker is not so much distorted. However, for large input signal with low frequency component the radiated sound is significantly distorted due to the nonlinearities of the loudspeaker. The suspension, damping, and magnetic flux of loudspeaker are the main sources of the nonlinearity. Such electromechanical parameters related to harmonic distortion have been represented by a polynomial model for diaphragm displacement, while each of the polynomial coefficient is evaluated by using the principle of harmonic balance experimentally. Based on the polynomial model, we designed a compensator for nonlinear harmonic distortion of direct radiator loudspeaker. Than observer is used to estimate the displacement of the loudspeaker diaphragm, which is rather difficult to measure directly in the conventional setting. The usefulness of the designed compensator is demonstrated by numerical simulations. Simulation results show about 30db decrease at the second and third higher harmonic distortions. We carry out an experiment on speaker to verify designed controller and nonlinear observer.

  • PDF

Deadzone Compensation of Positioning Systems using Fuzzy Logic

  • Minkyong Son;Jang, Jun-Oh;Lee, Pyeong-Gi;Park, Sang-Bae;Ahn, In-Seok;Lee, Sung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.102.4-102
    • /
    • 2002
  • A deadzone compensator is designed for a positioning system using fuzzy logic. The classification property of fuzzy logic systems make them a natural candidate for the rejection of errors induced by the deadzone, which has regions in which it behaves differently. A tuning algorithm is given for the fuzzy logic parameters, so that the deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates, formal nonlinear stability proofs are given to show that the tracking error is small. The fuzzy logic deadzone compensator is implemented on a positioning system to show its efficacy. 1. Deadzone Compansation 2. XY positioning table 3. Fuzzy Logic 4. Actuator nonlinearity

  • PDF

Trajectory Tracking Control of a Boom.Arm System of Hydraulic Excavator Using Disturbance Observer (외란관측기를 이용한 유압굴삭기 붐.아암 시스템의 궤적추적제어)

  • Cho S.H.;Ahn G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • This paper deals with the issue of trajectory tracking control of a hydraulic excavator using disturbance observer in order to compensate external disturbances occuring from coupling between attachment, asymmetry of a single rod cylinder, and deadzone of main control valve. Disturbance compensation control system with disturbance observer has been constructed for the boom and arm respectively. Simulation results were compared with experimental results to validate the computer simulation system of hydraulic excavator itself. Computer simulation shows that disturbance compensation control is effective for compensating system nonlinearity and thus improves positioning accuracy and trajectory tracking performance. Steady state error has been decreased by adding PI controller to this control scheme.

  • PDF