• Title/Summary/Keyword: nonlinear system analysis

Search Result 2,270, Processing Time 0.028 seconds

Dynamic Analysis of Harmonically Excited Non-Linear Structure System Using Harmonic Balance Method

  • Mun, Byeong-Yeong;Gang, Beom-Su;Kim, Byeong-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1507-1516
    • /
    • 2001
  • An analytical method is presented for evaluation of the steady state periodic behavior of nonlinear structural systems. This method is based on the substructure synthesis formulation and a harmonic balance procedure, which is applied to the analysis of nonlinear responses. A complex nonlinear system is divided into substructures, of which equations are approximately transformed to modal coordinates including nonlinear term under the reasonable procedure. Then, the equations are synthesized into the overall system and the nonlinear solution for the system is obtained. Based on the harmonic balance method, the proposed procedure reduces the size of large degrees-of-freedom problem in the solving nonlinear equations. Feasibility and advantages of the proposed method are illustrated using the study of the nonlinear rotating machine system as a large mechanical structure system. Results obtained are reported to be an efficient approach with respect to nonlinear response prediction when compared with other conventional methods.

  • PDF

Effects of Nonlinear Soil Characteristics on the Dynamic Stiffnesses of a Foundation-Soil System Excited with the Horizontal Motion (비선형 지반특성이 수평 방향운동을 받는 기초지반체계의 동적강성에 미치는 영향)

  • 김용석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.120-129
    • /
    • 2000
  • As structure-soil interaction analysis for the seismic analysis of structures requires a nonlinear analysis of a structure-soil system considering the inelastic characteristics of soil layers nonlinear analyses of the foundation-soil system with the horizontal excitation were performed considering the nonlinear soil conditions for the nonlinear seismic analysis of structures. Stiff soil profile of SD and soft soil profile of SE specified in UBC were considered for the soil layers of a foundation and Ramberg-Osgood model was assumed for the nonlinear characteristics of soil layers. Studies on the changes of dynamci stiffnesses and damping rations of surface and embedded foundations depending on foundation size soil layer depth and piles were performed to investigate the effects of the nonlinear soil layer on the horizontal and rotational dynamic stiffnesses and damping ratios of the foundation-soil system According to the study results nonlinear prperties of a soil laryer decreeased horizontal and rotational linear stiffnesses and increased damping ratios largely Effects of foundation size soil layer depth and piles were also significant suggesting the necessity of nonlinear seismic analyses of structures.

  • PDF

Detection of nonlinear structural behavior using time-frequency and multivariate analysis

  • Prawin, J.;Rao, A. Rama Mohan
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.711-725
    • /
    • 2018
  • Most of the practical engineering structures exhibit nonlinearity due to nonlinear dynamic characteristics of structural joints, nonlinear boundary conditions and nonlinear material properties. Hence, it is highly desirable to detect and characterize the nonlinearity present in the system in order to assess the true behaviour of the structural system. Further, these identified nonlinear features can be effectively used for damage diagnosis during structural health monitoring. In this paper, we focus on the detection of the nonlinearity present in the system by confining our discussion to only a few selective time-frequency analysis and multivariate analysis based techniques. Both damage induced nonlinearity and inherent structural nonlinearity in healthy systems are considered. The strengths and weakness of various techniques for nonlinear detection are investigated through numerically simulated two different classes of nonlinear problems. These numerical results are complemented with the experimental data to demonstrate its suitability to the practical problems.

Dynamic Analysis of Harmonically Excited Non-Linear System Using Multiple Scales Method

  • Moon, Byung-Young;Kang, Beom-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.819-828
    • /
    • 2002
  • An analytical method is presented for evaluation of the steady state periodic behavior of nonlinear systems. This method is based on the substructure synthesis formulation and a MS (multiple scales) procedure, which is applied to the analysis of nonlinear responses. The proposed procedure reduces the size of large degrees-of-freedom problem in solving nonlinear equations. Feasibility and advantages of the proposed method are illustrated with the nonlinear rotating machine system as an example of large mechanical structure systems. In addition, its efficiency for nonlinear response prediction will be shown by comparison of other conventional methods.

Robust attitude control and analysis for 3-axis stabilized spacecraft using sliding mode control (슬라이딩 모드 제어를 이용한 3축 안정화 위성의 자세 제어및 강건성 해석)

  • 신동준;김진호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.692-695
    • /
    • 1997
  • Nonlinear robust attitude controller for 3-axis stabilized spacecraft is designed. Robust stability analysis for nonlinear spacecraft system with disturbance is conducted. External disturbances and parametric uncertainties decrease Spacecraft's attitude pointing accuracy. Sliding Mode Control(SMC) provides stability of system in the face of these disturbances and uncertainties. The concept of quadratic boundedness and quadratic stability are applied to the robust analysis for the nonlinear spacecraft system subject to bounded disturbance torques. Numerical simulation is conducted to compare the analysis result and actual nonlinear simulation. The simulation show that analysis result is valid.

  • PDF

Nonlinear Time Series Analysis of Biological Chaos (생체 카오스의 비선형 시계열 데이터 분석)

  • 이병채;이명호
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.347-354
    • /
    • 1994
  • This paper describes a diagnostic protocol of nonlinear dynamic characteristics of biological system using chaos theory. An integrated chaos analysis system for the diagnosis of biological system was designed. We suggest a procedure of attractor reconstruction for reliable qualitative and quantitative analysis. The effect of autonomic nervous system activity on heart rate variability with power spectral analysis and its characteristics of chaotic attractors are investigated. The results show the applicability to evaluate the mental and physical conditions using nonlinear characteristics of biological signal.

  • PDF

Nonlinear Analysis of Gear Drive System due to Misalignment (정렬불량에 의한 기어 구동계 비선형 해석)

  • Lee, B.H.;Choi, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.31-36
    • /
    • 2002
  • Even through the problem of misalignment is of great importance, not much work has been reported in the literature on the effect of misalignment on the vibrations of the gear-bearing systems. Therefore, the nonlinear dynamic characteristics of the gear drive system due to misalignment are investigated in this work. Transmission error for helical gear and bearing nonlinear stiffness is calculated. The equation of motion of the gear drive system is modelled using the time-varying gear meshing stiffness, bearing nonlinear stiffness, and bearing pre-load due to the housing deformation. Numerical analysis lot the gear drive system show the result of misalignment effect - sub-harmonic component, bearing pre-load effect, and another nonlinear phenomenon. And the numerical analysis are verified by the experimental result.

  • PDF

Development of the Optimal Design Technique for the Pneumatic Vibration Isolation System by Nonlinear Modeling and Analysis (공압방진시스템의 비선형 모델링과 해석을 통한 최적설계기술 개발)

  • 문준희;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.151-154
    • /
    • 2001
  • The pneumatic vibration isolation systems have been widely used in industry and laboratories, but the full mathematical analysis and nonlinear modeling techniques have not been reported yet, even while the nonlinear features of the pneumatic vibration isolation system decide the main characteristics. For instance, the orifice in a pneumatic vibration isolator has been traditionally considered as a simple viscous damper, which was too much simplified to explain the performance of the isolation system. In this paper, the nonlinear characteristics are considered for the orifice and chamber, etc. The numerical simulation is carried out by the MATLAB/Simulink software. From the analysis result, a clear trend of the nonlinear features is shown: the vibration transmissibility changes not only due to the excitation frequency but also due to the amplitude of the vibration excitation. Therefore various design parameters are optimally chosen for the vibration isolation system. The proposed methods show good compatibility between the analysis results and the experiments.

  • PDF

Forced Vibration Analysis for Duffing's Vibration Systems with the Multi-Degree-of-Freedom Systems (다자유도계를 갖는 듀핑 진동계의 강제진동해석)

  • 전진영;박용남;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.18-24
    • /
    • 2000
  • As ship's propulsion shafting system has been complicated, many linear methods that have been used until now are not sufficient enough to produce proper solutions and these solutions are ofter unreasonable. So we need to solve nonlinear systems, and many methods for solving nonlinear vibration system have been developed. In this study, the propulsion shafting system was modeled with Duffing's nonlinear vibration system and multi-degree-of-freedom, and analyzed by using Quasi-Newton method. And for the purpose of confirming the reliability of the calculating results for nonlinear forced torsional vibration of the propulsion shafting system, the nonlinear calculated results were compared with the linear calculated ones for ship's propulsion shafting system. In the result, for analysis of the forced torsional vibration of the propulsion systems with nonlinear elements, the modified Newton's method is confirmed reasonable.

  • PDF

A Stability Analysis of the Magnetic Bearing System Subject to Sensor dislocation Error -Discussion on Nonlinear Magnetic Force Model- (센서의 설치 오차에 따른 자기베어링 지지 로터계의 안정도에 관한 연구 -비선형 자기력 모델에 대한 고찰-)

  • 정재일;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.799-805
    • /
    • 1996
  • In many cases, the magnetic farce model is linearized at the origin in designing the controller of a magnetic bearing system. However. this linear assumption is violated by the unmodeled nonlinear effect such as sensor dislocation and backup bearing dislocation. Therefore, a direct probe into the nonlinear magnetic force model in an active magnetic bearing system is necessary. To analyze the nonlinear magnetic force model of a magnetic bearing system, phase plot analysis which is to plot the numerical solution of the nonlinear equation in several initial points in the interested region is applied. Phase plot analysis is used to observe a nonlinear dynamic system qualitatively (not quantitatively). With this method, we can get much useful information of the nonlinear system. Among this information, a bifurcation graph that represents stability and locations of fixed points is essential. From the bifurcation graph, a stability criterion of magnetic bearing system is derived.

  • PDF