• 제목/요약/키워드: nonlinear structural response

검색결과 918건 처리시간 0.023초

Assessment of infill wall topology contribution in the overall response of frame structures under seismic excitation

  • Nanos, N.;Elenas, A.
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.355-372
    • /
    • 2015
  • This paper identifies the effects of infill wall existence and arrangement in the seismic response of steel frame structures. The methodology followed was based on the utilisation of overall seismic response indicators that distil the complexity of structural response in a single value hence enabling their straightforward comparative and statistical post process. The overall structure damage index after Park/Ang ($OSDI_{PA}$) and the maximum inter-story drift ratio (MISDR) have been selected as widely utilized structural seismic response parameters in contemporary state of art. In this respect a set of 225 Greek antiseismic code (EAK) spectrum compatible artificial accelerograms have been created and a series of non-linear dynamic analyses have been executed. Data were obtained through nonlinear dynamic analyses carried on an indicative steel frame structure with 5 different infill wall topologies. Results indicated the significant overall contribution of infill walls with a reduction that ranged 35-47% of the maximum and 74-81% of the average recorded $OSDI_{PA}$ values followed by an overall reduction of 64-67% and 58-61% for the respective maximum and average recorded MISDR values demonstrating the relative benefits of infill walls presence overall as well as localised with similar reductions observed in 1st level damage indicators.

등가하중을 이용한 비선형 정적 응답 위상최적설계의 기초연구 (Preliminary Study on Nonlinear Static Response Topology Optimization Using Equivalent Load)

  • 이현아;;박경진
    • 대한기계학회논문집A
    • /
    • 제34권12호
    • /
    • pp.1811-1820
    • /
    • 2010
  • 실제 대부분의 공학 문제들은 크고 작은 비선형성을 내포한다. 구조물의 최적설계 과정에서는 다수의 구조물 사이에 발생하는 접촉이나 비선형 물성치를 가지는 재료, 또는 대변형을 고려해야만 한다. 그러나 민감도 계산이 고가이기 때문에 비선형성을 최적화에 고려하는 것은 매우 어렵다. 따라서 비선형 정적 반응 위상최적설계를 위하여 등가하중법을 사용한다. 등가하중이란 비선형 해석에서 유발되는 반응장과 동일한 반응장을 유발하는 선형 정적하중이다. 등가하중법은 치수/형상최적설계를 위하여 연구되어 왔다. 위상최적설계는 치수/형상최적설계에 비하여 설계변수가 많기 때문에 기존의 등가하중법을 그대로 적용할 수 없기 때문에 위상최적설계를 위하여 등가하중법을 확장하고 수정한다. 간단한 예제를 통하여 등가하중법을 이용한 위상최적설계 결과가 수치적으로 도출한 결과와 유사함을 보이고 실제 공학 예제의 위상최적설계를 통하여 기존의 선형 정적 위상최적설계와 결과를 비교한다.

해양플랜트 구조물의 화재 사고 시 PFP 효과를 고려한 비선형 구조응답 해석 기법에 대한 연구 (Methods for Nonlinear Structural Response Analysis of Offshore Structures with Passive Fire Protection under Fires)

  • 김정환;이동훈;하연철;김봉주;서정관;백점기
    • 한국해양공학회지
    • /
    • 제28권4호
    • /
    • pp.294-305
    • /
    • 2014
  • In offshore structures, fire is one of the most important hazardous events. The concern of fires has recently been reflected in the rules and quantified risk assessment based design practice. Within the framework of quantified risk assessment and the management of offshore installations, therefore, more refined computations of the consequences or hazardous action effects due to fire are required. To mitigate fire risk, passive fire protection(PFP) is widely used on offshore structures. This study presents methods for a nonlinear structural response analysis considering the PFP effects under fires. It is found that a structural response analysis is most likely to use valuable technology for the optimization and design of offshore structures with PFP. Thermal and structural response analyses have been performed using LS-DYNA and FAHTS/USFOS. The results of these structural response analyses are compared with each other.

Kanai-Tajimi 필터 인공지진 가진된 마찰형 감쇠를 갖는 구조물의 변위 응답 확률분포 (Probability Distribution of Displacement Response of Structures with Friction dampers Excited by Earthquake Loads Generated Using Kanai-Tajimi Filter)

  • 윤경조;박지훈;민경원;이상현
    • 한국전산구조공학회논문집
    • /
    • 제20권5호
    • /
    • pp.623-628
    • /
    • 2007
  • 마찰형 감쇠를 갖는 구조물은 구조물의 고유주기, 하중의 특성, 그리고 외부하중에 대한 마찰력의 상대적인 크기에 따라 강한 비선형성을 나타내므로, 구조물의 최대응답을 예측하기 매우 어렵다. 기존의 연구에서는 비선형 시스템을 등가의 선형 시스템으로 치환하거나, 구조물의 비선형 시간이력해석을 통한 응답스펙트럼 분석에 의한 간단한 확률해석에 의해 수행되었다. 지진 하중은 불확실성과 불규칙성을 갖고 있기 때문에 확률적으로 정의된다면, 지진하중을 받는 마찰형 감쇠를 갖는 구조물의 응답 역시 확률분포를 나타낼 것이다. 본 논문에서는 Kanai-Tajimi 필터를 이용해 생성된 인공지진하중에 대해 마찰형 감쇠를 갖는 구조물의 비선형 시간이력 해석이 수행되었다. 그리고 정규분포 확률밀도 함수에 선형 회귀분석을 통해 얻어진 구조물의 주기와 마찰력의 크기에 의한 변수를 업데이트 시킨 마찰형 감쇠를 갖는 구조물의 변위 응답 확률밀도함수식이 제시된다.

선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (II) - 구조예제 - (Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (II) - Structural Examples -)

  • 박기종;박경진
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1061-1069
    • /
    • 2005
  • In part I of this papter Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is developed to conduct optimization for nonlinear behavior structures. The method/algorithm is also verified to show its convergency and optimality. In this present paper, the NROESL algorithm is applied to several structural problems with geometric and/or material nonlinearity. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.

Nonlinear optimal control for reducing vibrations in civil structures using smart devices

  • Contreras-Lopez, Joaquin;Ornelas-Tellez, Fernando;Espinosa-Juarez, Elisa
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.307-318
    • /
    • 2019
  • The frequently excessive vibrations presented in civil structures during seismic events or service conditions may result in users' discomfort, or worst, in structures failure, producing economic and even human casualties. This work contributes in proposing the synthesis of a nonlinear optimal control strategy for semiactive structural control, with the main characteristic that the synthesis considers both the structure model and the semiactive actuator nonlinear dynamics, which produces a nonlinear system that requires a nonlinear controller design. The aim is to reduce the unwanted vibrations in the response of civil structures, by means of intelligent fluid semiactive actuator such as the Magnetorheological Damper (MRD), which is a device with a low level of power consumption. The civil structures for which the proposed control methodology can be applied are those admitting a state-dependent coefficient factorized representation model, such as buildings, bridges, among others. A scaled model of a three storey building is analyzed as a case study, whose dynamical response involves displacement, velocity and acceleration of each one of the storeys, subjected to the North-South component of the September 19th., 2017, Puebla-Morelos (7.1M), Mexico earthquake. The investigation rests on comparing the structural response over time for two different conditions: with no control device installed and with one MRD installed between the first floor and the ground, where a nonlinear optimal signal for the MRD input voltage is determined. Simulation results are presented to show the effectiveness of the proposed controller for reducing the building's dynamical response.

Accuracy and robustness of hysteresis loop analysis in the identification and monitoring of plastic stiffness for highly nonlinear pinching structures

  • Hamish Tomlinson;Geoffrey W. Rodgers;Chao Xu;Virginie Avot;Cong Zhou;J. Geoffrey Chase
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.101-111
    • /
    • 2023
  • Structural health monitoring (SHM) covers a range of damage detection strategies for buildings. In real-time, SHM provides a basis for rapid decision making to optimise the speed and economic efficiency of post-event response. Previous work introduced an SHM method based on identifying structural nonlinear hysteretic parameters and their evolution from structural force-deformation hysteresis loops in real-time. This research extends and generalises this method to investigate the impact of a wide range of flag-shaped or pinching shape nonlinear hysteretic response and its impact on the SHM accuracy. A particular focus is plastic stiffness (Kp), where accurate identification of this parameter enables accurate identification of net and total plastic deformation and plastic energy dissipated, all of which are directly related to damage and infrequently assessed in SHM. A sensitivity study using a realistic seismic case study with known ground truth values investigates the impact of hysteresis loop shape, as well as added noise, on SHM accuracy using a suite of 20 ground motions from the PEER database. Monte Carlo analysis over 22,000 simulations with different hysteresis loops and added noise resulted in absolute percentage identification error (median, (IQR)) in Kp of 1.88% (0.79, 4.94)%. Errors were larger where five events (Earthquakes #1, 6, 9, 14) have very large errors over 100% for resulted Kp as an almost entirely linear response yielded only negligible plastic response, increasing identification error. The sensitivity analysis shows accuracy is reduces to within 3% when plastic drift is induced. This method shows clear potential to provide accurate, real-time metrics of non-linear stiffness and deformation to assist rapid damage assessment and decision making, utilising algorithms significantly simpler than previous non-linear structural model-based parameter identification SHM methods.

실측 지진응답을 이용한 지진손상도 평가 및 소성모형 추정 (Seismic Damage Assessment and Nonlinear Structural Identification Using Measured Seismic Responses)

  • 이형진;김남식
    • 한국지진공학회논문집
    • /
    • 제6권6호
    • /
    • pp.7-15
    • /
    • 2002
  • 본 논문에서는 다자유도계 구조물의 진동대 실험결과 분석에서 효율적인 지진손상도 평가 및 소성모형 추정을 목적으로, 계측결과를 각 부재별 소성이력으로 환산하고 이 소성이력에 대해 비선형 계수 추정법을 적용하는 다단계 방안을 연구하였다. 이때, 추정된 부재별 소성이력은 부재별 지진 손상도를 평가하는 지표로 활용될 수 있으며, 추정된 비선형 모형 계수를 이용하여 구축된 비선형 다자유도계 구조는 다양한 구조재해석의 모형으로 활용될 수 있다. 제시된 방법의 검증을 위해, 해석적 방법과 실험적 방법의 예제해석이 수행되었다. 예제해석 결과는 해석적 방법과 실험적 방법 모두에서 본 논문의 방법이 매우 효과적임을 보여 주고 있다.

On the nonlinear structural analysis of wind turbine blades using reduced degree-of-freedom models

  • Holm-Jorgensen, K.;Staerdahl, J.W.;Nielsen, S.R.K.
    • Structural Engineering and Mechanics
    • /
    • 제28권1호
    • /
    • pp.107-127
    • /
    • 2008
  • Wind turbine blades are increasing in magnitude without a proportional increase of stiffness for which reason geometrical and inertial nonlinearities become increasingly important. Often these effects are analysed using a nonlinear truncated expansion in undamped fixed base mode shapes of a blade, modelling geometrical and inertial nonlinear couplings in the fundamental flap and edge direction. The purpose of this article is to examine the applicability of such a reduced-degree-of-freedom model in predicting the nonlinear response and stability of a blade by comparison to a full model based on a nonlinear co-rotating FE formulation. By use of the reduced-degree-of-freedom model it is shown that under strong resonance excitation of the fundamental flap or edge modes, significant energy is transferred to higher modes due to parametric or nonlinear coupling terms, which influence the response and stability conditions. It is demonstrated that the response predicted by such models in some cases becomes instable or chaotic. However, as a consequence of the energy flow the stability is increased and the tendency of chaotic vibrations is reduced as the number of modes are increased. The FE model representing the case of infinitely many included modes, is shown to predict stable and ordered response for all considered parameters. Further, the analysis shows that the reduced-degree-of-freedom model of relatively low order overestimates the response near resonance peaks, which is a consequence of the small number of included modes. The qualitative erratic response and stability prediction of the reduced order models take place at frequencies slightly above normal operation. However, for normal operation of the wind turbine without resonance excitation 4 modes in the reduced-degree-of-freedom model perform acceptable.

등가정하중법을 이용한 차량 전면 구조물의 비선형 동적 반응 구조최적설계 (Nonlinear Dynamic Response Structural Optimization of an Automobile Frontal Structure Using Equivalent Static Loads)

  • 윤식;정성범;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1156-1161
    • /
    • 2008
  • Nonlinear dynamic analysis is generally used in automobile crash analysis and structural optimization considering crashworthiness uses the results of nonlinear dynamic analysis. Automobile crash optimization has high nonlinearity and difficulty in calculating sensitivity. Recently the equivalent static load (ESL) method has been proposed in order to overcome these difficulties. The ESL is the static load set generating the same displacement field as the nonlinear dynamic displacement field at each time step in dynamic analysis. From various researches regarding the ESL method, it has been proved that the ESL method is fairly useful. The ESL method can mathematically optimize a crash optimization problem through nonlinear analysis and well developed static optimization. The ESL is applied to nonlinear dynamic structural optimization of the automobile frontal impact problem. An automobile bumper is optimized. The mass of the structure is minimized while some constraints are satisfied.

  • PDF