• Title/Summary/Keyword: nonlinear solution techniques

Search Result 95, Processing Time 0.03 seconds

Comprehensive evaluation of structural geometrical nonlinear solution techniques Part I: Formulation and characteristics of the methods

  • Rezaiee-Pajand, M.;Ghalishooyan, M.;Salehi-Ahmadabad, M.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.849-878
    • /
    • 2013
  • This paper consists of two parts, which broadly examines solution techniques abilities for the structures with geometrical nonlinear behavior. In part I of the article, formulations of several well-known approaches will be presented. These solution strategies include different groups, such as: residual load minimization, normal plane, updated normal plane, cylindrical arc length, work control, residual displacement minimization, generalized displacement control, modified normal flow, and three-parameter ellipsoidal, hyperbolic, and polynomial schemes. For better understanding and easier application of the solution techniques, a consistent mathematical notation is employed in all formulations for correction and predictor steps. Moreover, other features of these approaches and their algorithms will be investigated. Common methods of determining the amount and sign of load factor increment in the predictor step and choosing the correct root in predictor and corrector step will be reviewed. The way that these features are determined is very important for tracing of the structural equilibrium path. In the second part of article, robustness and efficiency of the solution schemes will be comprehensively evaluated by performing numerical analyses.

Comprehensive evaluation of structural geometrical nonlinear solution techniques Part II: Comparing efficiencies of the methods

  • Rezaiee-Pajand, M.;Ghalishooyan, M.;Salehi-Ahmadabad, M.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.879-914
    • /
    • 2013
  • In part I of the article, formulation and characteristics of the several well-known structural geometrical nonlinear solution techniques were studied. In the present paper, the efficiencies and capabilities of residual load minimization, normal plane, updated normal plane, cylindrical arc length, work control, residual displacement minimization, generalized displacement control and modified normal flow will be evaluated. To achieve this goal, a comprehensive comparison of these solution methods will be performed. Due to limit page of the article, only the findings of 17 numerical problems, including 2-D and 3-D trusses, 2-D and 3-D frames, and shells, will be presented. Performance of the solution strategies will be considered by doing more than 12500 nonlinear analyses, and conclusions will be drawn based on the outcomes. Most of the mentioned structures have complex nonlinear behavior, including load limit and snap-back points. In this investigation, criteria like number of diverged and complete analyses, the ability of passing load limit and snap-back points, the total number of steps and analysis iterations, the analysis running time and divergence points will be examined. Numerical properties of each problem, like, maximum allowed iteration, divergence tolerance, maximum and minimum size of the load factor, load increment changes and the target point will be selected in such a way that comparison result to be highly reliable. Following this, capabilities and deficiencies of each solution technique will be surveyed in comparison with the other ones, and superior solution schemes will be introduced.

The Proposition of Efficient Nonlinear Solution Technique for Space Truss (공간 트러스에 대한 효율적인 비선형 해석 기법 제안)

  • 석창목;권영환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.481-490
    • /
    • 2002
  • The purpose of this paper is to evaluate the efficiency of various solution techniques and propose new efficient solution techniques for space trusses. Solution techniques used in this study are three load control methods (Newton-Raphson Method, modified Newton-Raphson Method, Secant-Newton Method), two load-displacement control methods(Arc-length Method, Work Increment Control Method) and three combined load-displacement control methods(Combined Arc-length Method I , Combined Arc-length MethodⅡ, Combined Work Increment Control Method). To evaluate the efficiency of these solution techniques, we must examine accuracy of their solutions, convergences and computing times of numerical examples. The combined load-displacement control methods are the most efficient in the geometric nonlinear solution techniques and in tracing post-buckling behavior of space truss. The combined work increment control method is the most efficient in tracing the buckling load of spate trusses with high degrees of freedom.

SOLVABILITY FOR A SYSTEM OF GENERALIZED NONLINEAR ORDERED VARIATIONAL INCLUSIONS IN ORDERED BANACH SPACES

  • Salahuddin, Salahuddin
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.359-377
    • /
    • 2017
  • In this paper, we consider a system of generalized nonlinear ordered variational inclusions in real ordered Banach spaces and define an iterative algorithm for a solution of our problems. By using the resolvent operator techniques to prove an existence result for the solution of the system of generalized nonlinear ordered variational inclusions and discuss convergence of sequences suggested by the algorithms.

Physics-based modelling for a closed form solution for flow angle estimation

  • Lerro, Angelo
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.273-287
    • /
    • 2021
  • Model-based, data-driven and physics-based approaches represent the state-of-the-art techniques to estimate the aircraft flow angles, angle-of-attack and angle-of-sideslip, in avionics. Thanks to sensor fusion techniques, a synthetic sensor is able to provide estimation of flow angles without any dedicated physical sensors. The work deals with a physics-based scheme derived from flight mechanic theory that leads to a nonlinear flow angle model. Even though several solvers can be adopted, nonlinear models can be replaced with less accurate but straightforward ones in practical applications. The present work proposes a linearisation to obtain the flow angles' closed form solution that is verified using a flight simulator. The main objective of the paper, in fact, is to analyse the estimation degradation using the proposed closed form solutions with respect to the nonlinear scheme. Moreover, flight conditions, where the proposed closed form solutions are not applicable, are identified.

A Comparative Study of Transcription Techniques for Nonlinear Optimal Control Problems Using a Pseudo-Spectral Method

  • Kim, Chang-Joo;Sung, Sangkyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.264-277
    • /
    • 2015
  • This article investigates various transcription techniques for the Legendre pseudospectral (PS) method to compare the pros and cons of each approach. Eight combinations from four different types of collocation points and two discretization methods for dynamic constraints, which differentiate Legendre PS transcription techniques, are implemented to solve a carefully selected test set of nonlinear optimal control problems (NOCPs). The convergence property and prediction accuracy are compared to provide a useful guideline for selecting the best combination. The tested NOCPs consist of the minimum time, minimum energy, and problems with state and control constraints. Therefore, the results drawn from this comparative study apply to the solution of similar types of NOCPs and can mitigate much debate about the best combinations. Additionally, important findings from this study can be used to improve the numerical efficiency of the Legendre PS methods. Three PS applications to the aerospace engineering problems are demonstrated to prove this point.

Nonlinear vibration of laminated piezoelectric layered plates with nonlinear viscoelastic support using different DQM techniques

  • Ola Ragb;Mohamed Abd Elkhalek;M.S. Matbuly;Mohamed Salah;Mohamed Eltaher;Tharwat Osman
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.1-27
    • /
    • 2024
  • This work presents the effectiveness of differential quadrature shape functions (i.e., Lagrange interpolation polynomial, Cardinal sine function, Delta Lagrange kernel and Regularized Shannon kernel) in the solution of nonlinear vibration of multilayers piezoelectric plates with nonlinear elastic support. A piezoelectric composite laminated plate is rested on nonlinear Winkler and Visco-Pasternak elastic foundations problems. Based on 3D elasticity theory and piezoelectricity, the governing equations of motion are derived. Differential quadrature methods based on four shape functions are presented as numerical techniques for solving this problem. The perturbation method is implemented to solve the obtained nonlinear eigenvalue problem. A MATLAB code is written for each technique for solving this problem and extract the numerical results. To validate these methods, the computed results are we compare with the previous exact results. In addition, parametric analyses are offered to investigate the influence of length to thickness ratio, elastic foundation parameters, various boundary conditions, and piezoelectric layers thickness on the natural frequencies and mode shapes. Consequently, it is discovered that the obtained results via the proposed schemes can be applied in structural health monitoring.

Approximation Solvability for a System of Nonlinear Variational Type Inclusions in Banach Spaces

  • Salahuddin, Salahuddin
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.101-123
    • /
    • 2019
  • In this paper, we consider a system of nonlinear variational type inclusions involving ($H,{\varphi},{\eta}$)-monotone operators in real Banach spaces. Further, we define a proximal operator associated with an ($H,{\varphi},{\eta}$)-monotone operator and show that it is single valued and Lipschitz continuous. Using proximal point operator techniques, we prove the existence and uniqueness of a solution and suggest an iterative algorithm for the system of nonlinear variational type inclusions. Furthermore, we discuss the convergence of the iterative sequences generated by the algorithms.

PERIODIC SOLUTIONS IN NONLINEAR NEUTRAL DIFFERENCE EQUATIONS WITH FUNCTIONAL DELAY

  • MAROUN MARIETTE R.;RAFFOUL YOUSSEF N.
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.255-268
    • /
    • 2005
  • We use Krasnoselskii's fixed point theorem to show that the nonlinear neutral difference equation with delay x(t + 1) = a(t)x(t) + c(t)${\Delta}$x(t - g(t)) + q(t, x(t), x(t - g(t)) has a periodic solution. To apply Krasnoselskii's fixed point theorem, one would need to construct two mappings; one is contraction and the other is compact. Also, by making use of the variation of parameters techniques we are able, using the contraction mapping principle, to show that the periodic solution is unique.

Internal modals interactions analysis in terms of AFG nanorods based on Rayleigh model of nonlinear nonlocal axial behaviour

  • Somaye Jamali Shakhlavi;Shahrokh Hosseini Hashemi;Reza Nazemnezhad
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.557-569
    • /
    • 2024
  • Nonlinear internal modals interactions analysis of axially functionally graded nanorods is evaluated on the basis of nonlocal elasticity theory and Rayleigh beam model for the first time. Functionally graded materials can be determined as nonhomogeneous composites which are obtained by combining of two various materials in order to get a new ideal material. In this research, material properties of nanorods are supposed to be calmly varied along the axial direction. Hamilton's principle is used to derive the equations with consideration of Von-Kármán's geometrically nonlinearity. Harmonic Differential Quadrature (HDQ) and Multiple Scale (MS) solution techniques are used to derive an approximate-analytic solution to the linear and nonlinear free axial vibration problem of non-classical nanorods for clamped-clamped and clamped-free boundary conditions. A parametric study is carried out to indicate the effects of index of AFG, aspect ratio, mode number, internal resonances and nonlinear amplitude on nonlinear nonlocal frequencies of axially functionally graded nanorods. Also, the effects of nonlocal and nonlinear coefficients and AFG index on relationships of internal resonances have been investigated. The presented theatrical-semi analytical model has the ability to predict very suitable results for extracting the internal modal interactions in the AFG nanorod.