References
- Abdelrahman, A.A., Abdel-Mottaleb, H.E., Aljabri, A., Mahmoud, E.R. and Eltaher, M.A. (2024), "Modeling of size dependent buckling behavior of piezoelectric sandwich perforated nanobeams rested on elastic foundation with flexoelectricity", Mech. Based Des. Struct. Machines, 1-27. https://doi.org/10.1080/15397734.2024.2365918.
- Abdelrahman, A.A., Saleem, H.A., Abdelhaffez, G.S. and Eltaher, M.A. (2023), "On bending of piezoelectrically layered perforated nanobeams embedded in an elastic foundation with flexoelectricity", Mathematics, 11(5), 1162. https://doi.org/10.3390/math11051162.
- Ahmed, R.A., Khalaf, B.S., Raheef, K.M., Fenjan, R.M. and Faleh, N.M. (2021), "Investigating dynamic response of nonlocal functionally graded porous piezoelectric plates in thermal environment", Steel Compos. Struct., 40(2), 243-254. https://doi.org/10.12989/scs.2021.40.2.243.
- Akhavan Alavi, S.M., Mohammadimehr, M. and Ejtahed, S.H. (2021), "Vibration analysis and control of micro porous beam integrated with FG-CNT distributed piezoelectric sensor and actuator", Steel Compos. Struct., 41(4), 595-608. https://doi.org/10.12989/scs.2021.41.4.595.
- Alibeigloo, A. and Madoliat, R. (2009), "Static analysis of cross-ply laminated plates with integrated surface piezoelectric layers using differential quadrature", Compos. Struct., 88(3), 342-353. https://doi.org/10.1016/j.compstruct.2008.04.018.
- Alnujaie, A., Daikh, A.A., Ghazwani, M.H., Assie, A.E. and Eltaher, M.A. (2024), "Size-dependent free vibration of coated functionally graded graphene reinforced nanoplates rested on viscoelastic medium", Adv. Nano Res., 17(2), 181. https://doi.org/10.12989/anr.2024.17.2.181.
- Arefi, M. and Zenkour, A.M. (2017), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Physica B: Condensed Matter, 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066.
- Arefi, M., Pourjamshidian, M. and Arani, A.G. (2019), "Dynamic instability region analysis of sandwich piezoelectric nano-beam with FG-CNTRCs face-sheets based on various high-order shear deformation and nonlocal strain gradient theory", Steel Compos. Struct., 32(2), 157-171. https://doi.org/10.12989/scs.2019.32.2.157.
- Aslan, T.A., Noori, A.R. and Temel, B. (2018), "Dynamic response of viscoelastic tapered cycloidal rods", Mech. Res. Commun., 92, 8-14. https://doi.org/10.1016/j.mechrescom.2018.06.006.
- Aslan, T.A., Noori, A.R. and Temel, B. (2023), "An efficient approach for free vibration analysis of functionally graded sandwich beams of variable cross-section", Structures, 58, 105397. https://doi.org/10.1016/j.istruc.2023.105397.
- Assie, A., Akbas, S.D., Kabeel, A.M., Abdelrahman, A.A. and Eltaher, M.A. (2022), "Dynamic analysis of porous functionally graded layered deep beams with viscoelastic core", Steel Compos. Struct., 43(1), 79-90. https://doi.org/10.12989/scs.2022.43.1.079.
- Assie, A., Mohamed, S., Abdelrahman, A.A. and Eltaher, M.A. (2023), "Mathematical formulations for static behavior of bidirectional FG porous plates rested on elastic foundation including middle/neutral-surfaces", Steel Compos. Struct., 48(2), 113-130.
- Baghaee, M., Farrokhabadi, A. and Jafari-Talookolaei, R.A. (2019), "A solution method based on Lagrange multipliers and Legendre polynomial series for free vibration analysis of laminated plates sandwiched by two MFC layers", J. Sound Vib., 447, 42-60. https://doi.org/10.1016/j.jsv.2019.01.037.
- Behera, S. and Kumari, P. (2020), "Free vibration analysis of Levy-Type smart hybrid plates using three-dimensional extended Kantorovich Method", Struct. Integrity Assessment: Proceedings of ICONS 2018, 467-477. https://doi.org/10.1007/978-981-13-8767-8_39.
- Chanda, A.G., Kontoni, D.P.N. and Sahoo, R. (2023), "Development of analytical and FEM solutions for static and dynamic analysis of smart piezoelectric laminated composite plates on elastic foundation", J. Eng. Mathem., 138(1), 12. https://doi.org/10.1007/s10665-022-10251-6.
- Chen, W.Q. and Lu, C.F. (2005), "3D free vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported", Compos. Struct., 69(1), 77-87. https://doi.org/10.1016/j.compstruct.2004.05.015.
- Civalek, O. and Akgoz, B. (2010), "Free vibration analysis of microtubules as cytoskeleton components: Nonlocal euler-bernoulli beam modeling", Scientia Iranica, 17(5).
- Dogan, A. and Sahan, M.F. (2023), "Viscoelastic damped response of laminated composite shells subjected to various dynamic loads", Mech. Based Des. Struct. Machines, 51(8), 4685-4708. https://doi.org/10.1080/15397734.2021.1975296.
- Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., 76(1), 141-151.
- Feri, M., Alibeigloo, A. and Pasha Zanoosi, A.A. (2016), "Three dimensional static and free vibration analysis of cross-ply laminated plate bonded with piezoelectric layers using differential quadrature method", Meccanica, 51, 921-937. https://doi.org/10.1007/s11012-015-0246-5.
- Feri, M., Krommer, M. and Alibeigloo, A. (2022), "Three-dimensional thermoelasticity analysis of viscoelastic FGM plate embedded in piezoelectric layers under thermal load", Appl. Sci., 13(1), 353.
- Feri, M., Krommer, M. and Alibeigloo, A. (2023), "Three-dimensional static analysis of a viscoelastic rectangular functionally graded material plate embedded between piezoelectric sensor and actuator layers", Mech. Based Des. Struct. Machines, 51(7), 3843-3867. https://doi.org/10.1080/15397734.2021.1943673.
- Goodarzi, M., Mohammadi, M., Khooran, M. and Saadi, F. (2016), "Thermo-mechanical vibration analysis of FG circular and annular nanoplate based on the visco-pasternak foundation", J. Solid Mech., 8(4), 788-805.
- Hachemi, M. (2022), "Layer-wise solutions for variable stiffness composite laminated sandwich plate using curvilinear fibers", Mech. Adv. Mater. Struct., 29(26), 5460-5477. https://doi.org/10.1080/15376494.2021.1956028.
- Heyliger, P. and Brooks, S. (1995), "Free vibration of piezoelectric laminates in cylindrical bending", Int. J. Solids Struct., 32(20), 2945-2960. https://doi.org/10.1016/0020-7683(94)00270-7.
- Kapuria, S. (2004), "A coupled zig-zag third-order theory for piezoelectric hybrid cross-ply plates", J. Appl. Mech., 71(5), 604-614.
- Kapuria, S. and Achary, G.G.S. (2005), "Exact 3D piezoelasticity solution of hybrid cross-ply plates with damping under harmonic electro-mechanical loads", J. Sound Vib., 282(3-5), 617-634. https://doi.org/10.1016/j.jsv.2004.03.030.
- Kapuria, S. and Achary, G.G.S. (2005), "Exact 3D piezoelasticity solution of hybrid cross-ply plates with damping under harmonic electro-mechanical loads", J. Sound Vib., 282(3-5), 617-634. https://doi.org/10.1016/j.jsv.2004.03.030.
- Kapuria, S. and Kulkarni, S.D. (2008), "An efficient quadrilateral element based on improved zigzag theory for dynamic analysis of hybrid plates with electroded piezoelectric actuators and sensors", J. Sound Vib., 315(1-2), 118-145. https://doi.org/10.1016/j.jsv.2008.01.053.
- Khalid, H.M., Ojo, S.O. and Weaver, P.M. (2023), "Inverse differential quadrature solutions for free vibration of arbitrary shaped laminated plate structures", Appl. Mathem. Modelling, 115, 778-802. https://doi.org/10.1016/j.apm.2022.11.013.
- Khdeir, A.A. (1988), "Free vibration and buckling of symmetric cross-ply laminated plates by an exact method", J. Sound Vib., 126(3), 447-461. https://doi.org/10.1016/0022-460X(88)90223-4.
- Kumar, R. and Kumar, A. (2023), "Free vibration analysis of laminated composite porous plate", Asian J. Civil Eng., 24(5), 1181-1198. https://doi.org/10.1007/s42107-022-00561-6.
- Kumari, P., Behera, S. and Kapuria, S. (2016), "Coupled three-dimensional piezoelasticity solution for edge effects in Levy-type rectangular piezolaminated plates using mixed field extended Kantorovich method", Compos. Struct., 140, 491-505. https://doi.org/10.1016/j.compstruct.2015.12.029.
- Matbuly, M.S., Ragb, O. and Nassar, M. (2009), "Natural frequencies of a functionally graded cracked beam using the differential quadrature method", Appl. Mathem. Comput., 215(6), 2307-2316. https://doi.org/10.1016/j.amc.2009.08.026.
- Matsunaga, H. (2000), "Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory", Compos. Struct., 48(4), 231-244. https://doi.org/10.1016/S0263-8223(99)00110-5.
- Mei, B., Alamri, S., Jalil, A.T., Hadrawi, S.K., Khan, I. and Baghaei, S. (2022), "Wave propagation and vibration analysis of sandwich structure with a bio-based flexible core and composite face sheets subjected to visco-Pasternak foundation and magnetic field", Compos. Struct., 300, 116132. https://doi.org/10.1016/j.compstruct.2022.116132.
- Mohamed, S.A., Eltaher, M.A., Mohamed, N. and Abo-bakr, R.M. (2024), "Nonlinear dynamics and forced vibrations of simply-supported fractional viscoelastic microbeams using a fractional differential quadrature method", Mech. Based Des. Struct. Machines, 1-20. https://doi.org/10.1080/15397734.2024.2353321.
- Moleiro, F., Soares, C.M., Carrera, E. and Reddy, J.N. (2020), "Evaluation of exact electro-elastic static and free vibration solutions of multilayered plates for benchmarking: piezoelectric composite laminates and soft core sandwich plates", Compos. Part C: Open Access, 2, 100038. https://doi.org/10.1016/j.jcomc.2020.100038.
- Nassar, M., Matbuly, M.S. and Ragb, O. (2013), "Vibration analysis of structural elements using differential quadrature method", J. Adv. Res., 4(1), 93-102. https://doi.org/10.1016/j.jare.2012.01.009.
- Noori, A.R., Aslan, T.A. and Temel, B. (2018), "Damped transient response of in-plane and out-of-plane loaded stepped curved rods", J. Brazil. Society Mech. Sci. Eng., 40, 1-25. https://doi.org/10.1007/s40430-017-0949-8.
- Olunloyo, V., Osheku, C. and Olayiwola, P. (2016), "Concerning the effect of a viscoelastic foundation on the dynamic stability of a pipeline system conveying an incompressible fluid", J. Appl. Comput. Mech., 2(2), 96-117. https://doi.org/10.22055/jacm.2016.12393.
- Osman, T., Matbuly, M. S., Mohamed, S.A. and Nassar, M. (2013), "Analysis of cracked plates using localized multi-domain differential quadrature method", Appl Comput. Math., 2, 109-114. https://doi.org/10.11648/j.acm.20130204.12.
- Osman, T., Mohamed, S.A., Eltaher, M.A., Alazwari, M.A. and Mohamed, N. (2024), "Vibration of bio-inspired laminated composite beams under varying axial loads", Steel Compos. Struct., 50(1), 25.
- Ragb, O. and Matbuly, M.S. (2022), "Nonlinear vibration analysis of elastically supported multi-layer composite plates using efficient quadrature techniques", Int. J. Comput. Meth. Eng. Sci. Mech., 23(2), 129-146. https://doi.org/10.1080/15502287.2021.1921882.
- Ragb, O., Mohamed, M. and Matbuly, M.S. (2019), "Free vibration of a piezoelectric nanobeam resting on nonlinear Winkler-Pasternak foundation by quadrature methods", Heliyon, 5(6).
- Ragb, O., Mohamed, M., Matbuly, M.S. and Civalek, O. (2021), "An accurate numerical approach for studying perovskite solar cells", Int. J. Energy Res., 45(11), 16456-16477. https://doi.org/10.1002/er.6892.
- Ragb, O., Salah, M., Matbuly, M.S. and Amer, R.B.M. (2020), "Vibration analysis of piezoelectric composite plate resting on nonlinear elastic foundations using sinc and discrete singular convolution differential quadrature techniques", Mathem. Prob. Eng., 2020(1), 7592302. https://doi.org/10.1155/2020/7592302.
- Ragb, O., Salah, M., Matbuly, M.S. and Amer, R.M. (2019), "Vibration analysis of piezoelectric composite using sinc and discrete singular convolution differential quadrature techniques", J. Eng. Appl. Sci., 14(17), 6540-6553.
- Ragb, O., Seddek, L.F. and Matbuly, M.S. (2017), "Iterative differential quadrature solutions for Bratu problem", Comput. Mathem. Appl., 74(2), 249-257. https://doi.org/10.1016/j.camwa.2017.03.033.
- Rahmani, A., Faroughi, S. and Friswell, M.I. (2021), "Vibration analysis for anti-symmetric laminated composite plates resting on visco-elastic foundation with temperature effects", Appl. Mathem. Modelling, 94, 421-445. https://doi.org/10.1016/j.apm.2021.01.026.
- Rouzegar, J., Salmanpour, N., Abad, F. and Li, L. (2022), "An analytical state-space solution for free vibration of sandwich piezoelectric plate with functionally graded core", Scientia Iranica, 29(2), 502-533. https://doi.org/10.24200/sci.2021.56480.4741.
- Sahan, M.F. (2017), "Viscoelastic damped response of cross-ply laminated shallow spherical shells subjected to various impulsive loads", Mech. Time-Dependent Mater., 21, 499-518. https://doi.org/10.1007/s11043-017-9339-y.
- Shu, C. (2000), Differential Quadrature and Its Application in Engineering: Springer Science & Business Media. http://dx.doi.org/10.1007/978-1-4471-0407-0.
- Shu, C. and Du, H. (1997), "Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates", Int. J. Solids Struct., 34(7), 819-835. https://doi.org/10.1016/S0020-7683(96)00057-1.
- Sui, S., Zhu, C., Li, C. and Lei, Z. (2023), "Free vibration of axially traveling moderately thick FG plates resting on elastic foundations", J. Vib. Eng. Technol., 11(1), 329-341. https://doi.org/10.1007/s42417-022-00582-0.
- Vel, S.S., Mewer, R.C. and Batra, R.C. (2004), "Analytical solution for the cylindrical bending vibration of piezoelectric composite plates", Int. J. Solids Struct., 41(5-6), 1625-1643. https://doi.org/10.1016/j.ijsolstr.2003.10.012.
- Wang, M., Xu, Y.G., Qiao, P. and Li, Z.M. (2022), "Buckling and free vibration analysis of shear deformable graphene-reinforced composite laminated plates", Compos. Struct., 280, 114854. https://doi.org/10.1016/j.compstruct.2021.114854.
- Wu, C.P. and Chen, W.Y. (1994), "Vibration and stability of laminated plates based on a local high order plate theory", J. Sound Vib., 177(4), 503-520. https://doi.org/10.1006/jsvi.1994.1448.
- Yang, C., Huang, B., Guo, Y. and Wang, J. (2021), "Characterization of delamination effects on free vibration and impact response of composite plates resting on visco-Pasternak foundations", Int. J. Mech. Sci., 212, 106833. https://doi.org/10.1016/j.ijmecsci.2021.106833.
- Yas, M.H., Jodaei, A., Irandoust, S. and Nasiri Aghdam, M. (2012), "Three-dimensional free vibration analysis of functionally graded piezoelectric annular plates on elastic foundations", Meccanica, 47, 1401-1423. https://doi.org/10.1007/s11012-011-9525-y.
- Ye, W., Zang, Q., Liu, J., Yang, F. and Lin, G. (2023), "Three-dimensional bending and free vibration analyses of laminated cylindrical panel with/without elastic foundation using two-dimensional discrete method", Soil Dyn. Earthq. Eng., 168, 107831. https://doi.org/10.1016/j.soildyn.2023.107831.
- Zamani, H.A., Aghdam, M.M. and Sadighi, M. (2017), "Free vibration analysis of thick viscoelastic composite plates on visco-Pasternak foundation using higher-order theory", Compos. Struct., 182, 25-35. https://doi.org/10.1016/j.compstruct.2017.08.101.
- Zenkour, A.M. and Alghanmi, R.A. (2019), "Bending of exponentially graded plates integrated with piezoelectric fiber-reinforced composite actuators resting on elastic foundations", Europ. J. Mech.A/Solids, 75, 461-471. https://doi.org/10.1016/j.euromechsol.2019.03.003.
- Zhang, Z., Feng, C. and Liew, K.M. (2006), "Three-dimensional vibration analysis of multilayered piezoelectric composite plates", Int. J. Eng. Sci., 44(7), 397-408. https://doi.org/10.1016/j.ijengsci.2006.02.002.
- Zong, Z., Lam, K.Y. and Zhang, Y.Y. (2005), "A multidomain differential quadrature approach to plane elastic problems with material discontinuity", Mathem. Comput. Modelling, 41(4-5), 539-553. https://doi.org/10.1016/j.mcm.2003.11.009.