• Title/Summary/Keyword: nonlinear solution methods

Search Result 243, Processing Time 0.02 seconds

Nonlinear vibration of oscillatory systems using semi-analytical approach

  • Bayat, Mahmoud;Bayat, Mahdi;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.409-413
    • /
    • 2018
  • In this paper, He's Variational Approach (VA) is used to solve high nonlinear vibration equations. The proposed approach leads us to high accurate solution compared with other numerical methods. It has been established that this method works very well for whole range of initial amplitudes. The method is sufficient for both linear and nonlinear engineering problems. The accuracy of this method is shown graphically and the results tabulated and results compared with numerical solutions.

Accurate analytical solution for nonlinear free vibration of beams

  • Bayat, M.;Pakar, I.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.337-347
    • /
    • 2012
  • In this study, Hamiltonian Approach (HA) is applied to analysis the nonlinear free vibration of beams. Two well-known examples are illustrated to show the efficiency of this method. One of them deals with the Nonlinear vibration of an electrostatically actuated microbeam and the other is the nonlinear vibrations of tapered beams. This new approach prepares us to achieve the beam's natural frequencies and mode shapes easily and a rapidly convergent sequence is obtained during the solution. The effects of the small parameters on the frequency of the beams are discussed. Some comparisons are conducted between the results obtained by the Hamiltonian Approach (HA) and numerical solutions using to illustrate the effectiveness and convenience of the proposed methods.

Mathematical solution for nonlinear vibration equations using variational approach

  • Bayat, M.;Pakar, I.
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1311-1327
    • /
    • 2015
  • In this paper, we have applied a new class of approximate analytical methods called Variational Approach (VA) for high nonlinear vibration equations. Three examples have been introduced and discussed. The effects of important parameters on the response of the problems have been considered. Runge-Kutta's algorithm has been used to prepare numerical solutions. The results of variational approach are compared with energy balance method and numerical and exact solutions. It has been established that the method is an easy mathematical tool for solving conservative nonlinear problems. The method doesn't need small perturbation and with only one iteration achieve us to a high accurate solution.

Study of complex nonlinear vibrations by means of accurate analytical approach

  • Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.721-734
    • /
    • 2014
  • In the current study, we consider a new class of analytical periodic solution for free nonlinear vibration of mechanical systems. Hamiltonian approach is applied to analyze nonlinear problems which occur in dynamics. The proposed method doesn't have the limitations of the classical methods and leads us to a high accurate solution by only one iteration. Two well known examples are studied to show the convenience and effectiveness of this approach. Runge-Kutta's algorithm is also applied and the results of it are compared with the Hamiltonian approach. High accuracy of the proposed approach reveals that the Hamiltonian approach can be very useful for other nonlinear practical problems in engineering.

Forced nonlinear vibration by means of two approximate analytical solutions

  • Bayat, Mahmoud;Bayat, Mahdi;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.853-862
    • /
    • 2014
  • In this paper, two approximate analytical methods have been applied to forced nonlinear vibration problems to assess a high accurate analytical solution. Variational Iteration Method (VIM) and Perturbation Method (PM) are proposed and their applications are presented. The main objective of this paper is to introduce an alternative method, which do not require small parameters and avoid linearization and physically unrealistic assumptions. Some patterns are illustrated and compared with numerical solutions to show their accuracy. The results show the proposed methods are very efficient and simple and also very accurate for solving nonlinear vibration equations.

Accurate analytical solutions for nonlinear oscillators with discontinuous

  • Bayat, Mahdi;Bayat, Mahmoud;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.349-360
    • /
    • 2014
  • In this study, three approximate analytical methods have been proposed to prepare an accurate analytical solution for nonlinear oscillators with fractional potential. The basic idea of the approaches and their applications to nonlinear discontinuous equations have been completely presented and discussed. Some patterns are also presented to show the accuracy of the methods. Comparisons between Energy Balance Method (EBM), Variational Iteration Method (VIM) and Hamiltonian Approach (HA) shows that the proposed approaches are very close together and could be easily extend to conservative nonlinear vibrations.

Investigation of nonlinear vibration behavior of the stepped nanobeam

  • Mustafa Oguz Nalbant;Suleyman Murat Bagdatli;Ayla Tekin
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.215-224
    • /
    • 2023
  • Nonlinearity plays an important role in control systems and the application of design. For this reason, in addition to linear vibrations, nonlinear vibrations of the stepped nanobeam are also discussed in this manuscript. This study investigated the vibrations of stepped nanobeams according to Eringen's nonlocal elasticity theory. Eringen's nonlocal elasticity theory was used to capture the nanoscale effect. The nanoscale stepped Euler Bernoulli beam is considered. The equations of motion representing the motion of the beam are found by Hamilton's principle. The equations were subjected to nondimensionalization to make them independent of the dimensions and physical structure of the material. The equations of motion were found using the multi-time scale method, which is one of the approximate solution methods, perturbation methods. The first section of the series obtained from the perturbation solution represents a linear problem. The linear problem's natural frequencies are found for the simple-simple boundary condition. The second-order part of the perturbation solution is the nonlinear terms and is used as corrections to the linear problem. The system's amplitude and phase modulation equations are found in the results part of the problem. Nonlinear frequency-amplitude, and external frequency-amplitude relationships are discussed. The location of the step, the radius ratios of the steps, and the changes of the small-scale parameter of the theory were investigated and their effects on nonlinear vibrations under simple-simple boundary conditions were observed by making comparisons. The results are presented via tables and graphs. The current beam model can assist in designing and fabricating integrated such as nano-sensors and nano-actuators.

THE CONVERGENCE OF HOMOTOPY METHODS FOR NONLINEAR KLEIN-GORDON EQUATION

  • Behzadi, Shadan Sadigh
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1227-1237
    • /
    • 2010
  • In this paper, a Klein-Gordon equation is solved by using the homotopy analysis method (HAM), homotopy perturbation method (HPM) and modified homotopy perturbation method (MHPM). The approximation solution of this equation is calculated in the form of series which its components are computed easily. The uniqueness of the solution and the convergence of the proposed methods are proved. The accuracy of these methods are compared by solving an example.

Dynamic stability and structural improvement of vibrating electrically curved composite screen subjected to spherical impactor: Finite element and analytical methods

  • Xiao, Caiyuan;Zhang, Guiju
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.533-552
    • /
    • 2022
  • The current article deals with the dynamic stability, and structural improvement of vibrating electrically curved screen on the viscoelastic substrate. By considering optimum value for radius curvature of the electrically curved screen, the structure improvement of the system occurs. For modeling the electrically system, the Maxwell's' equation is developed. Hertz contact model in employed to obtain contact forces between impactor and structure. Moreover, variational methods and nonlinear von Kármán model are used to derive boundary conditions (BCs) and nonlinear governing equations of the vibrating electrically curved screen. Galerkin and Multiple scales solution approach are coupled to solve the nonlinear set of governing equations of the vibrating electrically curved screen. Along with the analytical solution, 3D finite element simulation via ABAQUS package is provided with the aid of a FE package for simulating the current system's response. The results are categorized in 3 different sections. First, effects of geometrical and material parameters on the vibrational performance and stability of the curves panel. Second, physical properties of the impactor are taken in to account and their effect on the absorbed energy and velocity profile of the impactor are presented. Finally, effect of the radius and initial velocity on the mode shapes of the current structure is demonstrated.