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THE CONVERGENCE OF HOMOTOPY METHODS FOR

NONLINEAR KLEIN-GORDON EQUATION

SHADAN SADIGH BEHZADI

Abstract. In this paper, a Klein-Gordon equation is solved by using
the homotopy analysis method (HAM), homotopy perturbation method
(HPM) and modified homotopy perturbation method (MHPM). The ap-
proximation solution of this equation is calculated in the form of series
which its components are computed easily. The uniqueness of the solution
and the convergence of the proposed methods are proved. The accuracy of
these methods are compared by solving an example.
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1. Introduction

Klein-Gordon equation plays an important role in mathematical physics. The
equation has attracted much attention in studying solitons and condensed matter
physics [4], in investigating the interaction of solitons in a collisionless plasma,
the recurrence of initial states, and in examining the nonlinear wave equations
[6]. In recent years some works have been done in order to find the numeri-
cal solution of this equation. For example, spline difference method for solving
Klein-Gordon equations [9], invariant-conserving finite difference algorithms for
the nonlinear Klein-Gordon equation [13], a Legender spectral method [2], ap-
plication of homotopy perturbation method to Klein-Gordon equation [5]. In
this work, we compare the HAM, HPM and MHPM to solve the Klein-Gordon
equation as follows:

∂2u

∂t2
− ∂2u

∂x2
= −F (u), (1)
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with the initial conditions given by :

u(x, 0) = f(x),
∂u(x, t)

∂t
|t=0= g(x).

where, F (u) is a linear or nonlinear function and u(x, t) is unknown.
The paper is organized as follows. In section 2, the mentioned iterative meth-

ods are introduced for solving Eq.(1). Also, the uniqueness of the solution and
convergence of the proposed in section 3. Finally, the numerical example is
presented method are proved in section 4 to illustrate the accuracy of these
methods.

To obtain the approximate solution of Eq.(1), by integrating 2 times from
Eq.(1) with respect to t and using the initial conditions we obtain,

u(x, t) = G(x, t) +

∫ t

0

∫ t

0

∂2u(x, τ)

∂x2
dτ dτ −

∫ t

0

∫ t

0

F (u(x, τ)) dτ dτ, (2)

where

G(x, t) = f(x) + tg(x).

The double integrals in (2) can be written as [15]:
∫ t

0

∫ t

0

∂2u(x, τ)

∂x2
dτ dτ =

∫ t

0

(t− τ)
∂2u(x, τ)

∂x2
dτ,

∫ t

0

∫ t

0

F (u(x, τ)) dτ dτ =

∫ t

0

(t− τ) F (u(x, τ)) dτ.

So, we can write Eq.(2) as follows:

u(x, t) = G(x, t) +

∫ t

0

(t− τ)
∂2u(x, τ)

∂x2
dτ −

∫ t

0

(t− τ) F (u(x, τ)) dτ. (3)

Now we decompose the unknown function u(x, t) by the following decomposition
series:

u(x, t) =

∞∑
n=0

un(x, t).

2. Iterative methods

2.1 Description of the HAM Consider

N [u] = 0,

where N is a nonlinear operator, u(x, t) is unknown function and x is an
independent variable. Let u0(x, t) denote an initial guess of the exact solution
u(x, t), h 6= 0 an auxiliary parameter, H(x, t) 6= 0 an auxiliary function, and L
an auxiliary nonlinear operator with the property L[r(x, t)] = 0 when r(x, t) = 0.
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Then using q ∈ [0, 1] as an embedding parameter, we construct a homotopy as
follows:

(1− q)L[φ(x, t; q)− u0(x, t)]− qhH(x, t)N [φ(x, t; q)]

=Ĥ[φ(x, t; q);u0(x, t),H(x, t), h, q].
(4)

It should be emphasized that we have great freedom to choose the initial guess
u0(x, t), the auxiliary nonlinear operator L, the non-zero auxiliary parameter h,
and the auxiliary function H(x, t) [11,12].

Enforcing the homotopy (4) to be zero, i.e.,

Ĥ[φ(x, t; q);u0(x, t),H(x, t), h, q] = 0, (5)

we have the so-called zero-order deformation equation

(1− q)L[φ(x, t; q)− u0(x, t)] = qhH(x, t)N [φ(x, t; q)]. (6)

When q = 0, the zero-order deformation Eq.(6) becomes

φ(x, t; 0) = u0(x, t) (7)

and when q = 1, since h 6= 0 and H(x, t) 6= 0, the zero-order deformation Eq.(6)
is equivalent to

φ(x, t; 1) = u(x, t). (8)

Thus, according to (7) and (8), as the embedding parameter q increases from 0
to 1, φ(x, t; q) varies continuously from the initial approximation u0(x, t) to the
exact solution u(x, t). Such a kind of continuous variation is called deformation
in homotopy.

Due to Taylor’s theorem, φ(x, t; q) can be expanded in a power series of q as
follows

φ(x, t; q) = u0(x, t) +

∞∑
m=1

um(x, t)qm, (9)

where

um(x, t) =
1

m!

∂mφ(x, t; q)

∂qm
|q=0 .

Let the initial guess u0(x, t), the auxiliary nonlinear parameter L, the nonzero
auxiliary parameter h and the auxiliary function H(x, t) be properly chosen so
that the power series (9) of φ(x, t; q) converges at q = 1, then, we have under
these assumptions the solution series

u(x, t) = φ(x, t; 1) = u0(x, t) +

∞∑
m=1

um(x, t). (10)

From Eq.(9), we can write Eq.(4) as follows
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(1− q)L[φ(x, t, q)− u0(x, t)] = (1− q)L[

∞∑
m=1

um(x, t) qm] = q h H(x, t)N [φ(x, t, q)]

⇒ L[

∞∑
m=1

um(x, t) qm]− q L[

∞∑
m=1

um(x, t)qm] = q h H(x, t)N [φ(x, t, q)] (11)

By differentiating (11) m times with respect to q, we obtain

{L[
∞∑

m=1

um(x, t) qm]− q L[

∞∑
m=1

um(x, t)qm]}(m) = {q h H(x, t)N [φ(x, t, q)]}(m)

= m! L[um(x, t)− um−1(x, t)] = h H(x, t) m
∂m−1N [φ(x, t; q)]

∂qm−1
|q=0 .

Therefore,

L[um(x, t)− χmum−1(x, t)] = hH(x, t)<m(um−1(x, t)),

um(0) = 0,
(12)

where

<m(um−1(x, t)) =
1

(m− 1)!

∂m−1N [φ(x, t; q)]

∂qm−1
|q=0, (13)

and

χm =

{
0, m ≤ 1
1, m > 1

Note that the high-order deformation Eq.(12) is governing the nonlinear oper-
ator L, and the term <m(um−1(x, t)) can be expressed simply by (13) for any
nonlinear operator N . To obtain the approximation solution of Eq.(1), according
to HAM, let

N [u] = u(x, t)−G(x, t)−
∫ t

0

(t− τ)D2(u(x, τ))dτ +

∫ t

0

(t− τ)F (u(x, τ))dτ

so,

<m(um−1(x, t)) = um−1(x, t)−
∫ t

0

(t− τ)D2(u(x, τ))dτ

+

∫ t

0

(t− τ)F (u(x, τ))dτ − (1− χm)G(x, t)

(14)

Substituting (14) into (12)

L[um(x, t)− χmum−1(x, t)] = hH(x, t)
[
um−1(x, t)−

∫ t

0

(t− τ)D2(u(x, τ))dτ

+

∫ t

0

(t− τ)F (u(x, τ))dτ − (1− χm)G(x, t)
]
. (15)
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We take an initial guess u0(x, t) = G(x, t), an auxiliary nonlinear operator
Lu = u, a nonzero auxiliary parameter h = −1, and auxiliary function H(x, t) =
1. This is substituted into (15) to give the following recurrence relation

u0(x, t) = G(x, t),

un(x, t) =

∫ t

0

(t− τ)D2(un−1(x, τ))dτ −
∫ t

0

(t− τ)F (un−1(x, τ))dτ, n ≥ 1
(16)

Therefore, the solution u(x, t) becomes

u(x, t) =

∞∑
n=0

un(x, t)

= G(x, t) +

∞∑
n=0

∫ t

0

(t− τ)D2(un−1(x, τ))dτ −
∫ t

0

(t− τ)F (un−1(x, τ))dτ
(17)

Which is the method of successive approximations. If

| un(x, t) |< 1

then the series solution (17) convergence uniformly.

2.2 Description of the HPM and MHPM

To explain HPM [3,8], we consider the following general nonlinear differential
equation:

Lu+Nu = f(u) (18)

with initial conditions

u(x, 0) = f(x),

∂u(x, t)

∂t
|t=0= g(x).

according to HPM, we construct a homotopy which satisfies the following relation

H(u, p) = Lu− Lv0 + p Lv0 + p [Nu− f(u)] = 0, (19)

where p ∈ [0, 1] is an embedding parameter and v0 is an arbitrary initial approx-
imation satisfying the given initial conditions.

In HPM, the solution of Eq.(19) is expressed as

u(x, t) = u0(x, t) + p u1(x, t) + p2 u2(x, t) + ... (20)

Hence the approximate solution of Eq.(18) can be expressed as a series of the
power of p, i.e.

u = lim
p→1

u = u0 + u1 + u2 + ...
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where,

u0(x, t) = G(x, t),

...

um(x, t) =

m−1∑
k=0

∫ t

0

(t− τ)D2(um−k−1(x, τ))dτ − F (um−k−1(x, τ))dτ.

(21)

To explain MHPM [1,7,10], we consider Eq. (1) as

L(u) = u(x, t)−G(x, t)−
∫ t

0

(t− τ)D2(un−1(x, τ))dτ +

∫ t

0

(t− τ)F (un−1(x, τ))dτ,

where D2(u(x, τ)) = g1(x)h1(τ) and F (u(x, τ)) = g2(x)h2(τ). We can define
homotopy H(u, p,m) by

H(u, 0,m) = f(u), H(u, 1,m) = L(u),

where, m is an unknown real number and

f(u(x, t)) = u(x, t)−G(x, t).

Typically we may choose a convex homotopy by 0 ≤ p ≤ 1

H(u, p,m) = (1− p)f(u) + p L(u) + p (1− p)[m(g1(x) + g2(x))] = 0, (22)

where m is called the accelerating parameters, and for m = 0 we define
H(u, p, 0) = H(u, p), which is the standard HPM.

The convex homotopy (22) continuously trace an implicity defined curve from
a starting point H(u(x, t) − f(u), 0,m) to a solution function H(u(x, t), 1,m).
The embedding parameter pmonotonically increase from 0 to 1 as trivial problem
f(u) = 0 is continuously deformed to original problem L(u) = 0.

The MHPM uses the homotopy parameter p as an expanding parameter to
obtain

v =

∞∑
n=0

pnun, (23)

when p → 1, Eq. (19) corresponds to the original one and Eq. (23) becomes the
approximate solution of Eq. (1), i.e.,

u = lim
p→1

v =

∞∑
m=0

um,



The convergence of Homotopy Methods for nonlinear Klein-Gordon equation 1233

where,

u0(x, t) = G(x, t),

u1(x, t) =

m−1∑
k=0

∫ t

0

(t− τ)D2(u0(x, τ))dτ − F (u0(x, τ))dτ −m(g1(x) + g2(x)),

u2(x, t) =

m−1∑
k=0

∫ t

0

(t− τ)D2(u1(x, τ))dτ − F (u1(x, τ))dτ +m(g1(x) + g2(x)),

..

.

um(x, t) =

m−1∑
k=0

∫ t

0

(t− τ)D2(um−1(x, τ))dτ − F (um−1(x, τ))dτ, m ≥ 3

(24)

3. Convergence of the methods

We assume G(x, t) is bounded for all τ, t in J = [0, T ](T ∈ R) and
| t− τ |≤ M

′
, ∀ 0 ≤ t, τ ≤ T,M

′ ∈ R.
Also, we suppose D2(u(x, τ)) = d2

dx2u(x, t) and F (u) are Lipschitz continuous

with | D2(u)−D2(u∗) |≤ L1 | u−u∗ |, | F (u)−F (u∗) |≤ L2 | u−u∗ |. We set,

α = TM
′
(L1 + L2).

Theorem 1. Let 0 < α < 1, then nonlinear hyperbolic partial differential equa-
tion (3), has a unique solution.

Proof. Let u and u∗ be two different solutions of (3) then

| u− u∗ | =|
∫ t

0

(t− τ) [D2(u(x, τ))−D2(u∗(x, τ))] dτ

−
∫ t

0

(t− τ) [F (u(x, τ))− F (u∗(x, τ))] dτ |

≤
∫ t

0

| (t− τ) || D2(u(x, τ))−D2(u∗(x, τ)) | dτ

+

∫ t

0

| (t− τ) || F (u(x, τ))− F (u∗(x, τ)) | dτ

≤ TM
′
(L1 + L2) | u− u∗ |= α | u− u∗ |

From which we get (1 − α) | u − u∗ |≤ 0. Since 0 < α < 1, then | u − u∗ |= 0.
Implies u = u∗ and completes the proof. ¤

Theorem 2. If the series solution (16) of problem (3) using HAM is convergent
then it converges to the exact solution of the problem (3).
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Proof. We assume:

u(x, t) =

∞∑
m=0

um(x, t), D̂2(u(x, t) =

∞∑
m=0

D2(um(x, t)), F̂ (u(x, t) =

∞∑
m=0

F (um(x, t)),

where,

lim
m→∞

um(x, t) = 0.

We can write,
n∑

m=1

[um(x, t)− χmum−1(x, t)] = u1 + (u2 − u1) + . . .+ (un − un−1)

= un(x, t).

(25)

Hence, from (25)

lim
n→∞

un(x, t) = 0. (26)

So, using (26) and the definition of the nonlinear operator L, we have

∞∑
m=1

L[um(x, t)− χmum−1(x, t)] = L[

∞∑
m=1

[um(x, t)− χmum−1(x, t)]] = 0.

Therefore from (12), we can obtain that,

∞∑
m=1

L[um(x, t)− χmum−1(x, t)] = hH(x, t)

∞∑
m=1

<m−1(um−1(x, t)) = 0.

Since h 6= 0 and H(x, t) 6= 0 , we have

∞∑
m=1

<m−1(um−1(x, t)) = 0. (27)

By substituting <m−1(um−1(x, t)) into the relation (27) and simplifying it , we
have

∞∑
m=1

<m−1(um−1(x, t)) =

∞∑
m=1

[um−1(x, t)−
∫ t

0

(t− τ)D2(um−1(x, τ))dτ

+

∫ t

0

(t− τ)F (u(m−1x, τ))dτ − (1− χm)G(x, t)]

= u(x, t)−G(x, t)−
∫ t

0

(t− τ)D̂2(um−1(x, τ))dτ

+

∫ t

0

(t− τ)F̂ (u(m−1x, τ))dτ ].

(28)

From (27) and (28), we have

u(x, t) = G(x, t) +
∫ t

0
(t− τ)D̂2(um−1(x, τ))dτ − ∫ t

0
(t− τ)F̂ (um−1(x, τ))dτ,

Therefore, u(x, t) must be the exact solution. ¤
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Theorem 3. The series solution u(x, t) =
∑∞

i=0 ui(x, t) of problem (3) using
HPM converges [3].

Remark 1. Proving of convergence the MHPM is similar to proving of conver-
gence HPM.

4. Numerical example

In this section, we compute a numerical example which is solved by the HAM,
HPM and MHPM. The program has been provided with Mathematica 6 accord-
ing to the following algorithm. In this algorithm ε is a given positive value.

Algorithm:

Step 1. Set n ← 0.

Step 2. Calculate the recursive relation (16) for HAM, (21) for HPM and
(24) for MHPM.

Step 3. If | un+1 − un |< ε then go to step 4,
else n ← n+ 1 and go to step 2.

Step 4. Print u(x, t) =
∑n

i=0 ui(x, t) as the approximate of the exact solution.

Lemma 1. The computational complexity of the HAM is O(n), HPM and
MHPM are O(n2).

Proof. The number of computations including division, production, sum and
subtraction.

HAM:
In step 2,
u0 : 2.
u1 : 5.
.
.
un+1 : 5.

In step 4, the total number of the computations is equal to u0+
∑n+1

i=1 ui(x, t) =
5n+ 7 = O(n).

HPM:
u0 : 2.
u1 : 3.
.
.
un+1 : 3(n+ 1).

In step 4, the total number of the computations is equal to u0+
∑n+1

i=1 ui(x, t) =

1 +
∑n+1

i=1 3(i+ 1) = 3
2n

2 + 9
2n+ 5 = O(n2).

MHPM:
In step 2,
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u0 : 2.
u1 : 5.
u2 : 5.
.
.
un+1 : 3(n+ 1).

In step 4, the total number of the computations is equal to u0+
∑n+1

i=1 ui(x, t) =

1 + 5 + 5 +
∑n+1

i=3 3(i+ 1) = 3
2n

2 + 9
2n+ 6 = O(n2). ¤

By comparing the results of computational complexity, we see that the number
of computations in HAM is less than the number of computations in HPM and
MHPM.

Example 1. Consider the nonlinear Klein-Gordon equation [14]

utt − uxx = −u2,

subject to initial conditions

u(x, 0) = 1 + sinx, ut(x, 0) = 0.

Table 1. Numerical results for Example 1
x t=0.1 t=0.2

MADM
(n=5)

HPM
(n=4)

MHPM
(n=3)

HAM
(n=2)

MADM
(n=5)

HPM
(n=4)

MHPM
(n=3)

HAM
(n=2)

0.0 0.994999 0.995833 0.996782 0.998991 0.979999 0.981669 0.988695 0.994452
0.1 1.093291 1.094279 1.094591 1.096279 1.073723 1.079324 1.083532 1.088768
0.2 1.190502 1.190875 1.191375 1.918967 1.166134 1.171348 1.178759 1.184766
0.3 1.285668 1.289843 1.292637 1.298875 1.256326 1.262314 1.270168 1.279378
0.4 1.377844 1.382993 1.386374 1.394356 1.343423 1.349664 1.355784 1.364469

Table 1 shows that, approximate solution of the nonlinear Klein-Gordon equa-
tion is convergence with 2 iterations by using the HAM.

5. Conclusion

The HAM has been shown to solve effectively, easily and accurately a large
class of nonlinear problems with the approximations which are convergent are
rapidly to exact solutions. In this work, the HAM has been successfully employed
to obtain the approximate solution to analytical solution of the Klein-Gordon
equation. For this purpose, we showed that the HAM is more rapid convergence
than the HPM and MHPM. Also, the number of computations in HAM is less
than the number of computations in HPM and MHPM.
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