DOI QR코드

DOI QR Code

Accurate analytical solutions for nonlinear oscillators with discontinuous

  • Bayat, Mahdi (Department of Civil Engineering, College of Engineering, Mashhad Branch, Islamic Azad University) ;
  • Bayat, Mahmoud (Department of Civil Engineering, College of Engineering, Mashhad Branch, Islamic Azad University) ;
  • Pakar, Iman (Young Researchers and Elites Club, Mashhad Branch, Islamic Azad University)
  • Received : 2014.02.14
  • Accepted : 2014.05.27
  • Published : 2014.07.25

Abstract

In this study, three approximate analytical methods have been proposed to prepare an accurate analytical solution for nonlinear oscillators with fractional potential. The basic idea of the approaches and their applications to nonlinear discontinuous equations have been completely presented and discussed. Some patterns are also presented to show the accuracy of the methods. Comparisons between Energy Balance Method (EBM), Variational Iteration Method (VIM) and Hamiltonian Approach (HA) shows that the proposed approaches are very close together and could be easily extend to conservative nonlinear vibrations.

Keywords

References

  1. Bayat, M. and Pakar, I. (2011a), "Nonlinear free vibration analysis of tapered beams by Hamiltonian approach", J. Vib., 13(4), 654-661.
  2. Bayat, M. and Pakar, I. (2011b), "Application of He's Energy Balance Method for Nonlinear vibration of thin circular sector cylinder", Int. J. Phy. Sci., 6(23),5564-5570.
  3. Bayat, M., Pakar, I. and Shahidi, M. (2011c), "Analysis of nonlinear vibration of coupled systems with cubic nonlinearity", Mechanika, 17(6), 620-629.
  4. Bayat, M. and Pakar, I. (2012a), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
  5. Bayat, M., Pakar, I. and Domaiirry, G. (2012b), "Recent developments of Some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review", Lat. Am. J. Solid. Struct., 9(2),145-234 .
  6. Bayat, M., Pakar, I. and Bayat, M. (2013a), "Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell", Steel Compos. Struct., 14(5), 511-521. https://doi.org/10.12989/scs.2013.14.5.511
  7. Bayat, M. and Pakar, I. (2013b), "Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses", Earthq. Eng. Eng. Vib., 12(3), 411-420. https://doi.org/10.1007/s11803-013-0182-0
  8. Bayat, M. and Pakar, I. (2013c), "On the approximate analytical solution to non-linear oscillation systems", Shock Vib., 20(1), 43-52. https://doi.org/10.1155/2013/549213
  9. Bayat, M., Pakar, I. and Cveticanin, L. (2014a), "Nonlinear free vibration of systems with inertia and static type cubic nonlinearities : an analytical approach", Mech. Mach. Theor., 77, 50-58. https://doi.org/10.1016/j.mechmachtheory.2014.02.009
  10. Bayat, M., Pakar, I. and Cveticanin, L. (2014b), "Nonlinear vibration of stringer shell by means of extended Hamiltonian approach", Arch. Appl. Mech., 84(1), 43-50. https://doi.org/10.1007/s00419-013-0781-2
  11. Bayat, M., Bayat, M. and Pakar, I. (2014c), "Nonlinear vibration of an electrostatically actuated microbeam", Lat. Am. J. Solid. Struct., 11(3), 534-544. https://doi.org/10.1590/S1679-78252014000300009
  12. Kuo, B.L. and Lo, C.Y. (2009), "Application of the differential transformation method to the solution of a damped system with high nonlinearity", Nonlin. Anal., 70(4), 1732-1737. https://doi.org/10.1016/j.na.2008.02.056
  13. Cordero, A., Hueso, J.L., Martinez, E. and Torregros, J.R. (2010), "Iterative methods for use with nonlinear discrete algebraic models", Math. Comput.Model., 52(7-8), 1251-1257. https://doi.org/10.1016/j.mcm.2010.02.028
  14. Dehghan, M. and Tatari, M. (2008), "Identifying an unknown function in a parabolic equation with over specified data via He's variational iteration method", Chaos, Soliton. Fract., 36(1), 157-166. https://doi.org/10.1016/j.chaos.2006.06.023
  15. Ganji, D.D., Rafei, M., Sadighi, A. and Ganji, Z.Z. (2009), "A comparative comparison of He's method with perturbation and numerical methods for nonlinear vibrations equations", Int. J. Nonlin. Dyn. Eng. Sci., 1(1), 1-20.
  16. He, J.H. (2007), "Variational approach for nonlinear oscillators", Chaos, Soliton. Fract., 34(5), 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026
  17. He, J.H. (2008), "An improved amplitude-frequency formulation for nonlinear oscillators", Int. J. Nonlin. Sci. Numer. Simul., 9(2), 211-212.
  18. He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillators", Mech. Res. Commun., 29(2), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
  19. He, J.H. (1999), "Variational iteration method: a kind of nonlinear analytical technique: some examples", Int. J. Nonlin. Mech., 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
  20. He, J.H. (2004), "The homotopy perturbation method for nonlinear oscillators with discontinuities", Appl. Math. Comput., 151(1), 287-292. https://doi.org/10.1016/S0096-3003(03)00341-2
  21. Mehdipour, I., Ganji, D.D. and Mozaffari, M. (2010), "Application of the energy balance method to nonlinear vibrating equations", Curr. Appl. Phys., 10(1), 104-112. https://doi.org/10.1016/j.cap.2009.05.016
  22. Nayfeh, A.H. (1973), Perturbation Methods, Wiley Online Library.
  23. Odibat, Z., Momani, S. and Erturk, V.S. (2008), "Generalized differential transform method: application to differential equations of fractional order", Appl. Math. Comput., 197(2) , 467-477. https://doi.org/10.1016/j.amc.2007.07.068
  24. Pakar, I., Bayat, M. and Bayat, M. (2014), "Accurate periodic solution for nonlinear vibration of thick circular sector slab", Steel Compos. Struct., 16(5), 521-531. https://doi.org/10.12989/scs.2014.16.5.521
  25. Pakar, I. and Bayat, M. (2011a), "Analytical solution for strongly nonlinear oscillation systems using energy balance method", Int. J. Phy. Sci., 6(22), 5166-5170.
  26. Pakar, I., Bayat, M. and Bayat, M. (2012a), "On the approximate analytical solution for parametrically excited nonlinear oscillators", J. Vibroeng., 14(1), 423-429.
  27. Pakar, I. and Bayat, M. (2012b), "Analytical study on the non-linear vibration of Euler-Bernoulli beams", J. Vibroeng., 14(1), 216-224.
  28. Pakar, I. and Bayat, M. (2013a), "An analytical study of nonlinear vibrations of buckled Euler_Bernoulli beams", Acta Physica Polonica A, 123(1), 48-52. https://doi.org/10.12693/APhysPolA.123.48
  29. Pakar, I. and Bayat, M. (2013b), "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., 46(1), 137-151. https://doi.org/10.12989/sem.2013.46.1.137
  30. Shaban, M., Ganji, D.D. and Alipour, A.A. (2010), "Nonlinear fluctuation, frequency and stability analyses in free vibration of circular sector oscillation systems", Curr. Appl. Phys., 10(5), 1267-1285. https://doi.org/10.1016/j.cap.2010.03.005
  31. Shen, Y.Y. and Mo, L.F. (2009), "The max-min approach to a relativistic equation", Comput. Math. Appl., 58(11), 2131-2133. https://doi.org/10.1016/j.camwa.2009.03.056
  32. Wu, G. (2011), "Adomian decomposition method for non-smooth initial value problems", Math. Comput. Model., 54(9-10), 2104-2108. https://doi.org/10.1016/j.mcm.2011.05.018
  33. Xu, N. and Zhang, A. (2009), "Variational approachnext term to analyzing catalytic reactions in short monoliths", Comput. Math. Appl., 58(11-12), 2460-2463. https://doi.org/10.1016/j.camwa.2009.03.035
  34. Xu, L. (2008), "Variational approach to solution of nonlinear dispersive K(m, n) equation", Chaos, Soliton. Fract., 37(1),137-143. https://doi.org/10.1016/j.chaos.2006.08.016
  35. Zeng, D.Q. and Lee, Y.Y. (2009), "Analysis of strongly nonlinear oscillator using the max-min approach", Int. J. Nonlin. Sci. Numer. Simul., 10(10), 1361-1368.

Cited by

  1. A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
  2. Study of complex nonlinear vibrations by means of accurate analytical approach vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.721
  3. High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129
  4. Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221