• Title/Summary/Keyword: nonlinear prediction

Search Result 915, Processing Time 0.026 seconds

Chaotic Phenomena in Addiction Model for Digital Leisure

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.291-297
    • /
    • 2013
  • Chaotic dynamics have been studied by many researchers in the fields of biology, physics, and engineering. Interest in chaos is also expanding to the social sciences such as politics, economics, and others, including the prediction of societal events. The concept of leisure has developed from a passive concept correlated with relaxation, entertainment, and ideology formation into a positive concept that assumes a more active role. As information and communications technology develops, digital leisure activity is expected to continue spreading. This expansion of digital leisure function correctly, as well as. Traditional leisure activity functions correctly more, whereas digital leisure activity is predicted to function incorrectly more often. In this paper, we propose a mathematical addiction model of digital leisure that deals with its dysfunctions such as addiction to digital leisure, including computer games, internet search, internet chatting, and social media. Herein, to solve addiction to digital leisure, we propose a model derived from a nicotine addiction.

Pull - out Capacity of Ground Anchor in Weathered Rock (풍화암 지반에 정착된 앵커의 인발저항 특성)

  • 이승환;황의석;이봉열;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.435-442
    • /
    • 2002
  • Fluid Confirmation Tests(FCT) on 1500 ground Anchors install in weathered rock were carried out to investigate upper and lower limit of elastic elongation, frictional resistant of fixed anchor body, mobilized angle between anchor body and soil. All the measured data were analysed and compared with theoretical equations. The frictional angles of diaphragm wall and anchorage system in weathered rock showed nonlinear curve between upper and lower limit of standard elongation. The FCT results indicated that the frictional resistant angles increased with higher values of surcharge load. The quality assurance on the fixed anchor location was investigated by means of measuring elastic elongation during the FCT, and comparing these with theoretical design length, the quality of anchors in this particular site found to be above average standard. The results of this research works with provide valuable guide line on quality assurance of anchors system as well as resonable prediction of friction resistance between the fixed anchor body and the weathered rock.

  • PDF

Adsorption Characteristic of Hydrogen and Methane on Activated Carbon (활성탄에 대한 수소화 메탄의 흡착특성)

  • Jin, Yinzhe;Choi, Dae-Ki;Row, Kyung-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.307-314
    • /
    • 2005
  • In this work, a static volumetric method was experimentally implemented to measure the adsorption isotherm of hydrogen and methane by the activated carbon. The equilibrium data of stationary phase and mobile phase were correlated into the Langmuir, Freundlich, Langmuir-Freundlich, and Toth isotherms, respectively. In addition, the comparison between prediction and experimental data was made. By a nonlinear regression analysis, the experimental parameters in the equilibrium isotherms were estimated and compared. Then, the linear and quadratic equations for pressure and temperature to adsorption amounts were expressed. The adsorption amounts were increased with the pressure increase and the temperature decrease.

Inductance Calculation in a Switched Reluctance Motor using Permeance Method (퍼미언스 방법을 이용한 스위치드 릴럭턴스 전동기의 인덕턴스 산정)

  • Lee, Cheewoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1836-1842
    • /
    • 2012
  • Torque is proportional to the rate of change of inductance in a switched reluctance motor (SRM), and hence, phase inductance is an important parameter in determining the behavior of an SRM. Therefore, the accurate prediction of inductance with respect to rotor position makes a significant contribution to designing an SRM and its analytical approach is not straightforward due to nonlinear flux distribution. Although several different approaches using a finite element analysis (FEA) or curve-fitting tool have been employed to compute phase inductance [2-5], they are not suitable for a simple design procedure because the FEA necessitates a large amount of time in both modeling and solving with complexity for every motor design, and the curve-fitting requires the data of flux linkage from either an experimental test or an FEA simulation. In this paper, phase inductance is predicted by means of a permeance method, and the proposed approach is analytically verified in terms of the accuracy of estimated inductance compared to inductance obtained by FEA.

An Improved Algorithm of the Daily Peak Load Forecasting fair the Holidays (특수일의 최대 전력수요예측 알고리즘 개선)

  • Song, Gyeong-Bin;Gu, Bon-Seok;Baek, Yeong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.3
    • /
    • pp.109-117
    • /
    • 2002
  • High accuracy of the load forecasting for power systems improves the security of the power system and generation cost. However, the forecasting problem is difficult to handle due to the nonlinear and the random-like behavior of system loads as well as weather conditions and variation of economical environments. So far. many studies on the problem have been made to improve the prediction accuracy using deterministic, stochastic, knowledge based and artificial neural net(ANN) method. In the conventional load forecasting method, the load forecasting maximum error occurred for the holidays on Saturday and Monday. In order to reduce the load forecasting error of the daily peak load for the holidays on Saturday and Monday, fuzzy concept and linear regression theory have been adopted into the load forecasting problem. The proposed algorithm shows its good accuracy that the average percentage errors are 2.11% in 1996 and 2.84% in 1997.

Issues in Static FE Analysis of Reinforced Concrete Panels subjected to Biaxial Tensile Loads (이축인장을 받는 철근콘크리트 패널의 정적 유한요소해석에서의 논점)

  • 이상진;이홍표;이영정
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.569-576
    • /
    • 2003
  • Fundamental issues in static finite element analysis of reinforced concrete panel subjected to biaxial tensile loads are discussed. This paper is trying to bring our attention to the appropriate use of concrete material models such as cracking criteria, tension stiffening model and the steel models which are basically used in the nonlinear finite element analysis of reinforced concrete panels. We mainly investigate the sensitivity of available material models and finite element technologies to the finite element analysis result using our recent reinforced concrete panel experiment result. Throughout this study, we found that the judicious use of the material models and finite element technologies with the sound understanding of structural characteristics can only guarantee the accurate prediction of panel behaviour.

  • PDF

Numerical Prediction of Thermoacoustic Instability in Rijke Tube Using Non-linear Model for Heat Source (비선형 열원모델을 이용한 Rijke tube 내열음향 불안정 곡선의 수치예측기법)

  • Song, Woo-Seog;Lee, Seung-Bae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2524-2529
    • /
    • 2008
  • The thermal system like a combustion chamber is believed to experience a significant instability problem with vibration in case that the thermal energy or the acoustic energy are transformed into a different form through a relevant path. This study deals with a numerically- predicted, Thermoacoustic instability in a Rijke tube by using a non-linear model for a heat source. The heating part where the energy transformation occurs actively is modeled after simulating two-dimensional cylinder case with constant surface temperature, and a nonlinear model that accounts for the transfer function of magnitude- and phase-characteristics is properly implemented so as to be dependent on the pulsation strength in the tube. The heat source model is observed to result in equivalent Thermoacoustic instabilities in the Rijke tube except low flow-rate cases in which the natural convection is dominant.

  • PDF

Development of a Wheel/Rail Geometric Contact Simulation Program (차륜/레일 기하학적 접촉 시뮬레이션 프로그램 개발)

  • Han Hyung-Suk;Lee En-Ho;Kim Jae-Chul
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.645-650
    • /
    • 2003
  • Wheel/Rail geometric constraint relationships, such as effective conicity and gravitational stiffness, strongly influence the lateral dynamics of railway vehicles. In general, these geometric contact characteristics are nonlinear functions of the wheelset lateral displacement. There is a need to develop a wheel/rail contact simulation program for wheels and rails with arbitrary profiles for the prediction of the dynamic behavior of railway vehicles. An algorithm to simulate any combination of wheels and rails is employed and a GUI for easy analysis is constructed. The simulation program is applied to KTX which will run on both KTX and conventional rails, two rail standards having different rail profiles. The results show that the two rail systems have different geometric contact characteristic

  • PDF

Experimental Study on Coefficient of air Convection with boundary layer and boiling effects (경계층과 비등효과를 고려한 외기대류계수에 관한 실험연구)

  • Choi Myoung sung;Kim Yun Yong;Song Young Chul;Woo Sang Kyun;Kim Jin Keun;Lee Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.711-714
    • /
    • 2004
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. In order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind, boiling and layer effects. Finally, the prediction model for equivalent coefficient of air convection was theoretically proposed. The coefficient of air convection in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with types of form. For determining the initial coefficient of air convection, boiling effects must be considered. The coefficient of air convection is affected by boundary layer with respect to the distance from the surface.

  • PDF

An On-Line Fuzzy Identification Method utilizing Fuzzy Model Evaluation

  • Bae, Sang-Wook;Park, Tae-Hong-;Lee, Kee-Sang-;Park, Gwi-Tae-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1226-1229
    • /
    • 1993
  • This paper proposes a new on-line fuzzy model identification(ONFID) algorithm in which the fuzzy model evaluation stage is incorporated. The fuzzy model evaluation is performed by the fuzzy equality index which is known to be a useful tool to evaluate the performance of the identified fuzzy model. Then the fuzzy model is updated according to the result of the evaluation. Proposed ONFID algorithm can sensibly identify to the system changes. To show the usefulness of the proposed algorithm, it is applied to the fuzzy model identification problem of the gas furnace and the output prediction problem of the flexible joint manipulator which is a nonlinear system.

  • PDF