• 제목/요약/키워드: nonlinear prediction

검색결과 905건 처리시간 0.03초

Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

  • Lee, Dong-Wook;Kong, Seong-G;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.920-924
    • /
    • 2005
  • This paper presents adaptive learning data of evolvable neural networks (ENNs) for time series prediction of nonlinear dynamic systems. ENNs are a special class of neural networks that adopt the concept of biological evolution as a mechanism of adaptation or learning. ENNs can adapt to an environment as well as changes in the environment. ENNs used in this paper are L-system and DNA coding based ENNs. The ENNs adopt the evolution of simultaneous network architecture and weights using indirect encoding. In general just previous data are used for training the predictor that predicts future data. However the characteristics of data and appropriate size of learning data are usually unknown. Therefore we propose adaptive change of learning data size to predict the future data effectively. In order to verify the effectiveness of our scheme, we apply it to chaotic time series predictions of Mackey-Glass data.

  • PDF

The Comparison of Parameter Estimation and Prediction Methods for STBL Model

  • Kim, Duk-Gi;Kim, Sung-Soo;Lee, Chan-Hee;Lee, Keon-Myung;Lee, Sung-Duck
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권1호
    • /
    • pp.17-29
    • /
    • 2007
  • The major purpose of this article is the comparison of estimation method with Newton-Raphson, Kalman-filter, and prediction method with Kalman prediction. Conditional expectation in space time bilinear(STBL) model, which is a very powerful and parsimonious nonlinear time-series model for the space time series data can be viewed as a set of time series collected simultaneously at a number of spatial locations and time points, and which have appeared in a important applications areas: geography, geology, natural resources, ecology, epidemiology, etc.

  • PDF

Improved prediction of Pump Turbine Dynamic Behavior using a Thoma number dependent Hill Chart and Site Measurements

  • Manderla, Maximilian;Kiniger, Karl N.;Koutnik, Jiri
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권2호
    • /
    • pp.63-72
    • /
    • 2015
  • Water hammer phenomena are important issues for the design and the operation of hydro power plants. Especially, if several reversible pump-turbines are coupled hydraulically there may be strong unit interactions. The precise prediction of all relevant transients is challenging. Regarding a recent pump-storage project, dynamic measurements motivate an improved turbine modeling approach making use of a Thoma number dependency. The proposed method is validated for several transient scenarios and turns out to improve correlation between measurement and simulation results significantly. Starting from simple scenarios, this allows better prediction of more complex transients. By applying a fully automated simulation procedure broad operating ranges of the highly nonlinear system can be covered providing a consistent insight into the plant dynamics. This finally allows the optimization of the closing strategy and hence the overall power plant performance.

Quantitative Structure Activity Relationship Prediction of Oral Bioavailabilities Using Support Vector Machine

  • Fatemi, Mohammad Hossein;Fadaei, Fatemeh
    • 대한화학회지
    • /
    • 제58권6호
    • /
    • pp.543-552
    • /
    • 2014
  • A quantitative structure activity relationship (QSAR) study is performed for modeling and prediction of oral bioavailabilities of 216 diverse set of drugs. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regression (MLR), artificial neural network (ANN), support vector machine (SVM) and random forest (RF) techniques. Comparison between statistical parameters of these models indicates the suitability of SVM over other models. The root mean square errors of SVM model were 5.933 and 4.934 for training and test sets, respectively. Robustness and reliability of the developed SVM model was evaluated by performing of leave many out cross validation test, which produces the statistic of $Q^2_{SVM}=0.603$ and SPRESS = 7.902. Moreover, the chemical applicability domains of model were determined via leverage approach. The results of this study revealed the applicability of QSAR approach by using SVM in prediction of oral bioavailability of drugs.

승용차용 스트러트 고무마운트의 피로수명 예측 (Fatigue Life Prediction of Strut Rubber Mount for Passenger Car)

  • 이학주;김완두;조성도성;김창욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.298-303
    • /
    • 2000
  • A procedure to predict the fatigue life of rubber components based on the signed principal strain method was proposed. A tension-compression rubber specimen with Jang-gu shape was designed and principal strain distribution was obtained by using the nonlinear finite element analysis. Finite element analysis and fatigue test of strut rubber mount were conducted to evaluate the fatigue life prediction procedure proposed. A procedure was employed to predict the fatigue life of strut rubber mount. Predicted fatigue lives have a good agreement with tested lives within a factor of 3.

  • PDF

신경망 알고리즘을 이용한 아크 용접부 품질 예측 (Prediction of Arc Welding Quality through Artificial Neural Network)

  • 조정호
    • Journal of Welding and Joining
    • /
    • 제31권3호
    • /
    • pp.44-48
    • /
    • 2013
  • Artificial neural network (ANN) model is applied to predict arc welding process window for automotive steel plate. Target weldment was various automotive steel plate combination with lap fillet joint. The accuracy of prediction was evaluated through comparison experimental result to ANN simulation. The effect of ANN variables on the accuracy is investigated such as number of hidden layers, perceptrons and transfer function type. A static back propagation model is established and tested. The result shows comparatively accurate predictability of the suggested ANN model. However, it restricts to use nonlinear transfer function instead of linear type and suggests only one single hidden layer rather than multiple ones to get better accuracy. In addition to this, obvious fact is affirmed again that the more perceptrons guarantee the better accuracy under the precondition that there are enough experimental database to train the neural network.

주파수-변형률 곡선의 개발 및 검증 (Development & Verification of Frequency-Strain Dependence Curve)

  • 정창균;곽동엽;박두희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.146-153
    • /
    • 2009
  • One dimensional site response analysis is widely used in prediction of the ground motion that is induced by earthquake. Equivalent linear analysis is the most widely used method due to its simplicity and ease of use. However, the equivalent linear method has been known to be unreliable since it approximates the nonlinear soil behavior within the linear framework. To consider the nonlinearity of the ground at frequency domain, frequency dependent algorithms that can simulate shear strain - frequency dependency have been proposed. In this study, the results of the modified equivalent linear analysis are compared to evaluate the degree of improvement and the applicability of the modified algorithms. Results show the novel smoothed curve that is proposed by this study indicates the most stable prediction and can enhance the accuracy of the prediction.

  • PDF

신경망이론을 이용한 강우예측모형의 개발 (Development of Rainfall Forecastion Model Using a Neural Network)

  • 오남선
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.253-256
    • /
    • 1996
  • Rainfall is one of the major and complicated elements of hydrologic system. Accurate prediction of rainfall is very important to mitigate storm damage. The neural network is a good model to be applied for the classification problem, large combinatorial optimization and nonlinear mapping. In this dissertation, rainfall predictions by the neural network theory were presented. A multi-layer neural network was constructed. The network learned continuous-valued input and output data. The network was used to predict rainfall. The online, multivariate, short term rainfall prediction is possible by means of the developed model. A multidimensional rainfall generation model is applied to Seoul metropolitan area in order to generate the 10-minute rainfall. Application of neural network to the generated rainfall shows good prediction. Also application of neural network to 1-hour real data in Seoul metropolitan area shows slightly good predictions.

  • PDF

대공간 구조물의 UHPC 적용을 위한 기계학습 기반 강도예측기법 (Machine Learning Based Strength Prediction of UHPC for Spatial Structures)

  • 이승혜;이재홍
    • 한국공간구조학회논문집
    • /
    • 제20권4호
    • /
    • pp.111-121
    • /
    • 2020
  • There has been increasing interest in UHPC (Ultra-High Performance Concrete) materials in recent years. Owing to the superior mechanical properties and durability, the UHPC has been widely used for the design of various types of structures. In this paper, machine learning based compressive strength prediction methods of the UHPC are proposed. Various regression-based machine learning models were built to train dataset. For train and validation, 110 data samples collected from the literatures were used. Because the proportion between the compressive strength and its composition is a highly nonlinear, more advanced regression models are demanded to obtain better results. The complex relationship between mixture proportion and concrete compressive strength can be predicted by using the selected regression method.

Investigation of random fatigue life prediction based on artificial neural network

  • Jie Xu;Chongyang Liu;Xingzhi Huang;Yaolei Zhang;Haibo Zhou;Hehuan Lian
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.435-449
    • /
    • 2023
  • Time domain method and frequency domain method are commonly used in the current fatigue life calculation theory. The time domain method has complicated procedures and needs a large amount of calculation, while the frequency domain method has poor applicability to different materials and different spectrum, and improper selection of spectrum model will lead to large errors. Considering that artificial neural network has strong ability of nonlinear mapping and generalization, this paper applied this technique to random fatigue life prediction, and the effect of average stress was taken into account, thereby achieving more accurate prediction result of random fatigue life.