• Title/Summary/Keyword: nonlinear memory

Search Result 208, Processing Time 0.021 seconds

Ferroelectric ultra high-density data storage based on scanning nonlinear dielectric microscopy

  • Cho, Ya-Suo;Odagawa, Nozomi;Tanaka, Kenkou;Hiranaga, Yoshiomi
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.94-112
    • /
    • 2007
  • Nano-sized inverted domain dots in ferroelectric materials have potential application in ultrahigh-density rewritable data storage systems. Herein, a data storage system is presented based on scanning non-linear dielectric microscopy and a thin film of ferroelectric single-crystal lithium tantalite. Through domain engineering, we succeeded to form an smallest artificial nano-domain single dot of 5.1 nm in diameter and artificial nano-domain dot-array with a memory density of 10.1 Tbit/$inch^2$ and a bit spacing of 8.0 nm, representing the highest memory density for rewritable data storage reported to date. Sub-nanosecond (500psec) domain switching speed also has been achieved. Next, long term retention characteristic of data with inverted domain dots is investigated by conducting heat treatment test. Obtained life time of inverted dot with the radius of 50nm was 16.9 years at $80^{\circ}C$. Finally, actual information storage with low bit error and high memory density was performed. A bit error ratio of less than $1\times10^{-4}$ was achieved at an areal density of 258 Gbit/inch2. Moreover, actual information storage is demonstrated at a density of 1 Tbit/$inch^2$.

  • PDF

Earthquake effect on the concrete walls with shape memory alloy reinforcement

  • Beiraghi, Hamid
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.491-506
    • /
    • 2019
  • Literature regarding concrete walls reinforced by super elastic shape memory alloy (SMA) bars is rather limited. The seismic behavior of a system concurrently including a distinct steel reinforced concrete (RC) wall, as well as another wall reinforced by super elastic SMA at the first story, and steel rebar at upper stories, would be an interesting matter. In this paper, the seismic response of such a COMBINED system is compared to a conventional system with steel RC concrete walls (STEEL-Rein.) and also to a wall system with SMA rebar at the first story and steel rebar at other stories ( SMA-Rein.). Nonlinear time history analysis at maximum considered earthquake (MCE) and design bases earthquake (DBE) levels is conducted and the main responses like maximum inter-story drift ratio and residual inter-story drift ratio are investigated. Furthermore, incremental dynamic analysis is used to accomplish probabilistic seismic studies by creating fragility curves. Results demonstrated that the SMA-Rein. system, subjected to DBE and MCE ground motions, has almost zero and 0.27% residual maximum inter-story drifts, while the values for the COMBINED system are 0.25% and 0.51%. Furthermore, fragility curves show that using SMA rebar at the base of all walls causes a larger probability of exceedance 3% inter-story drift limit state compared to the COMBINED system. Static push over analysis demonstrated that the strength of the COMBINED model is almost 0.35% larger than that of the two other models, and its general post-yielding stiffness is also approximately twice the corresponding stiffness of the two other models.

Investigation of MRS and SMA Dampers Effects on Bridge Seismic Resistance Employing Analytical Models

  • Choi, Eunsoo;Jeon, Jong-Su;Kim, Woo Jin;Kang, Joo-Won
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1325-1335
    • /
    • 2018
  • This study dealt with investigating the seismic performance of the smart and shape memory alloy (SMA) and magnets plus rubber-spring (MRS) dampers and their effects on the seismic resistance of multiple-span simply supported bridges. The rubber springs in the MRS dampers were pre-compressed. For this aim, a set of experimental works was performed together with developing nonlinear analytical models to investigate dynamic responses of the bridges subjected to earthquakes. Fragility analysis and probabilistic assessment were conducted to assess the seismic performance for the overall bridge system. Fragility curves were then generated for each model and were compared with those of as-built. Results showed dampers could increase the seismic capacity of bridges. Furthermore, from system fragility curves, use of damper models reduced the seismic vulnerability in comparison to the as-built bridge model. Although the SMA damper showed the best seismic performance, the MRS damper was the most appropriate one for the bridge in that the combination of magnetic friction and pre-compressed rubber springs was cheaper than the shape memory alloy, and had the similar capability of the damper.

Fabrication and Characterization of 32x32 Silicon Cantilever Array using MEMS Process (MEMS 공정을 이용한 32x32 실리콘 캔틸레버 어레이 제작 및 특성 평가)

  • Kim Young-Sik;Na Kee-Yeol;Shin Yoon-Soo;Park Keun-Hyung;Kim Yeong-Seuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.894-900
    • /
    • 2006
  • This paper reports the fabrication and characterization of $32{\times}32$ thermal cantilever array for nano-scaled memory device applications. The $32{\times}32$ thermal cantilever array with integrated tip heater has been fabricated with micro-electro-mechanical systems(MEMS) technology on silicon on insulator(SOI) wafer using 9 photo masking steps. All of single-level cantilevers(1,024 bits) have a p-n junction diode in order to eliminate any electrical cross-talk between adjacent cantilevers. Nonlinear electrical characteristic of fabricated thermal cantilever shows its own thermal heating mechanism. In addition, n-channel high-voltage MOSFET device is integrated on a wafer for embedding driver circuitry.

Tabu search based optimum design of geometrically non-linear steel space frames

  • Degertekin, S.O.;Hayalioglu, M.S.;Ulker, M.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.5
    • /
    • pp.575-588
    • /
    • 2007
  • In this paper, two algorithms are presented for the optimum design of geometrically nonlinear steel space frames using tabu search. The first algorithm utilizes the features of short-term memory (tabu list) facility and aspiration criteria and the other has long-term memory (back-tracking) facility in addition to the aforementioned features. The design algorithms obtain minimum weight frames by selecting suitable sections from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange (W) shapes. Stress constraints of AISC Allowable stress design (ASD) specification, maximum drift (lateral displacement) and interstorey drift constraints were imposed on the frames. The algorithms were applied to the optimum design of three space frame structures. The designs obtained using the two algorithms were compared to each other. The comparisons showed that the second algorithm resulted in lighter frames.

Buckling and postbuckling behavior of solid superelastic shape memory alloy shafts

  • Rahman, Muhammad Ashiqur;Qiu, Jinhao;Tani, Junji
    • Structural Engineering and Mechanics
    • /
    • v.23 no.4
    • /
    • pp.339-352
    • /
    • 2006
  • Observing the unique stress-strain curves of the superelastic shape memory alloy (SMA) in tension and compression, the primary intention of this study is to investigate the behavior of the shafts made of the same material, under torsional loading-unloading cycles for large angle of twist. Experiments have been performed for the superelastic SMA shafts with different unsupported lengths and angles of twist and the results are compared with those of stainless steel (SUS304) shafts under similar test conditions. As expected for the superelastic SMA, the residual strains are small enough after each cycle and consequently, the hysteresis under loading-reverse loading is much narrower than that for the SUS304. For large angle of twists, the torsional strength of the superelastic SMA increases nonlinearly and exceeds that of SUS304. Most interestingly, the slender solid superelastic SMA shafts are found to buckle when acted upon torsion for large angle of twist.

Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes

  • Ozbulut, Osman E.;Silwal, Baikuntha
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.709-724
    • /
    • 2016
  • This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm to improve the performance of isolated buildings against near-fault earthquakes. The S-FBI system consists of a flat steel-PTFE sliding bearing and superelastic NiTi shape memory alloy (SMA) cables. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA cables provide restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm in order to optimize S-FBI system. Nonlinear time history analyses of the building with optimal S-FBI system are performed. A set of 20 near-fault ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.

A Study of Multiple Dynamic Programming (Multiple dynamic programming에 관한 연구)

  • Young Moon park
    • 전기의세계
    • /
    • v.21 no.1
    • /
    • pp.13-16
    • /
    • 1972
  • Dynamic Programming is regarded as a very powerful tool for solving nonlinear optimization problem subject to a number of constraints of state and control variables, but has definite disadvantages that it requires much more computing time and consumes much more memory spaces than other technigues. In order to eliminate the above-mentioned demerits, this paper suggests a news technique called Multiple Dynamic Programming. The underlying principles are based on the concept of multiple passes that, instead of forming fin lattices in time-state plane as adopted in the conventional Dynamic Programming, the Multiple Dynamic Programming constitutes, at the first pass, coarse lattices in the feasible domain of time-state plane and determines the optimal state trajectory by the usual method of Dynamic Programming, and at the second pass again constitutes finer lattices in the narrower domain surrounded by both the upperand lower edges next to the lattice edges through which the first pass optimal trajectory passes and determines the more accurate optimal trajectory of state, and then at the third pass repeats the same processes, and so on. The suggested technique insures remarkable curtailment in amounts of computer memory spaces and conputing time, and its applicability has been demonstrated by a case study on the hydro-thermal power coordination in Korean power system.

  • PDF

Modeling of Dynamic Hysteresis Based on Takagi-Sugeno Fuzzy Duhem Model

  • Lee, Sang-Yun;Park, Mignon;Baek, Jaeho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.277-283
    • /
    • 2013
  • In this study, we propose a novel method for modeling dynamic hysteresis. Hysteresis is a widespread phenomenon that is observed in many physical systems. Many different models have been developed for representing a hysteretic system. Among them, the Duhem model is a classical nonlinear dynamic hysteresis model satisfying the properties of hysteresis. The purpose of this work is to develop a novel method that expresses the local dynamics of the Duhem model by a linear system model. Our approach utilizes a certain type of fuzzy system that is based on Takagi-Sugeno (T-S) fuzzy models. The proposed T-S fuzzy Duhem model is achieved by fuzzy blending of the linear system model. A simulated example applied to shape memory alloy actuators, which have typical hysteretic properties, illustrates the applicability of our proposed scheme.

Matched filter Using Acoustoelectric Memory Convolver (Acoustoelectric 기억 콘벌버를 이용한 정함필터)

  • 최영호;정영지;황금찬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.13-22
    • /
    • 1984
  • A surface acoustic wave signal processing device using the silicon surface state is presented and shown capable of storing a reference signal and later correlating another signal with the stored reference. The device memory consists of the storage of the spatial 2k pattern of an acoustic wave as stored charges in the surface state of silicon surface. Results of experiments are presented which characterize the operation of device. Simpliied models for charging process and nonlinear acoustoelectric interactions based on consideration of single surface state at the surface of silicon The validity of simplified model has been qualitatibely confirmed with experimental results and the application of this device to aprogrammable matched filter of communication is considered.

  • PDF