• 제목/요약/키워드: nonlinear integer model

검색결과 67건 처리시간 0.029초

조립품을 위한 비선형 공차할당 (Nonlinear Tolerance Allocation for Assembly Components)

  • 김광수;최후곤
    • 산업공학
    • /
    • 제16권spc호
    • /
    • pp.39-44
    • /
    • 2003
  • As one of many design variables, the role of dimension tolerances is to restrict the amount of size variation in a manufactured feature while ensuring functionality. In this study, a nonlinear integer model has been modeled to allocate the optimal tolerance to each individual feature at a minimum manufacturing cost. While a normal distribution determines statistically worst tolerances with its symmetrical property in many previous tolerance allocation studies, a asymmetrical distribution is more realistic because its mean is not always coincident with a process center. A nonlinear integer model is modeled to allocate the optimal tolerance to a feature based on a beta distribution at a minimum total cost. The total cost as a function of tolerances is defined by machining cost and quality loss. After the convexity of manufacturing cost is checked by the Hessian matrix, the model is solved by the Complex Method. Finally, a numerical example is presented demonstrating successful model implementation for a nonlinear design case.

혼합정수 선형계획법 기반의 비선형 패턴 분류 기법 (An MILP Approach to a Nonlinear Pattern Classification of Data)

  • 김광수;류홍서
    • 대한산업공학회지
    • /
    • 제32권2호
    • /
    • pp.74-81
    • /
    • 2006
  • In this paper, we deal with the separation of data by concurrently determined, piecewise nonlinear discriminant functions. Toward the end, we develop a new $l_1$-distance norm error metric and cast the problem as a mixed 0-1 integer and linear programming (MILP) model. Given a finite number of discriminant functions as an input, the proposed model considers the synergy as well as the individual role of the functions involved and implements a simplest nonlinear decision surface that best separates the data on hand. Hence, exploiting powerful MILP solvers, the model efficiently analyzes any given data set for its piecewise nonlinear separability. The classification of four sets of artificial data demonstrates the aforementioned strength of the proposed model. Classification results on five machine learning benchmark databases prove that the data separation via the proposed MILP model is an effective supervised learning methodology that compares quite favorably to well-established learning methodologies.

A Mixed Integer Programming Model for Bulk Cargo Ship Scheduling with a Single Loading Port

  • Seong-Cheol Cho
    • 한국항해학회지
    • /
    • 제22권4호
    • /
    • pp.15-19
    • /
    • 1998
  • This paper concerns a bulk or semibulk cargo ship scheduling problem with a single loading port. This type of ship scheduling problem is frequently needed in real world for carrying minerals or agricultural produce from a major single production zone to many destinations scattered over a large area of the world. The first optimization model for this problem was introduced by Ronen (1986) as a nonlinear mixed integer program. The model developed in this paper is an improvement of his model in the sense that nonlinearities and numerous unnecessary integer variables have been eliminated. By this improvement we could expect real world instances of moderate sizes to be solved optimal solutions by commercial integer programming software. Similarity between the ship scheduling model and the capacitated facility location model is also discussed.

  • PDF

A Quantitative Model for a Supply Chain Design

  • Cho, Geon;Ryu, Il;Lee, Kyoung-Jae;Park, Yi-Sook;Jung, Kyung-Ho;Kim, Do-Goan
    • 한국정보기술응용학회:학술대회논문집
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.311-314
    • /
    • 2005
  • Supply chain optimization is one of the most important components in the optimization of a company's value chain. This paper considers the problem of designing the supply chain for a product that is represented as an assembly bill of material (BOM). In this problem we are required to identify the locations at which different components of the product arc are produced/assembled. The objective is to minimize the overall cost, which comprises production, inventory holding and transportation costs. We assume that production locations are known and that the inventory policy is a base stock policy. We first formulate the problem as a 0-1 nonlinear integer programming model and show that it can be reformulated as a 0-1 linear integer programming model with an exponential number of decision variables.

  • PDF

주문량 증가에 따른 할인 정책이 있는 다기간 재고 모형의 해법 연구 (A Study on a Multi-period Inventory Model with Quantity Discounts Based on the Previous Order)

  • 임성묵
    • 산업경영시스템학회지
    • /
    • 제32권4호
    • /
    • pp.53-62
    • /
    • 2009
  • Lee[15] examined quantity discount contracts between a manufacturer and a retailer in a stochastic, two-period inventory model where quantity discounts are provided based on the previous order size. During the two periods, the retailer faces stochastic (truncated Poisson distributed) demands and he/she places orders to meet the demands. The manufacturer provides for the retailer a price discount for the second period order if its quantity exceeds the first period order quantity. In this paper we extend the above two-period model to a k-period one (where k < 2) and propose a stochastic nonlinear mixed binary integer program for it. In order to make the program tractable, the nonlinear term involving the sum of truncated Poisson cumulative probability function values over a certain range of demand is approximated by an i-interval piecewise linear function. With the value of i selected and fixed, the piecewise linear function is determined using an evolutionary algorithm where its fitness to the original nonlinear term is maximized. The resulting piecewise linear mixed binary integer program is then transformed to a mixed binary integer linear program. With the k-period model developed, we suggest a solution procedure of receding horizon control style to solve n-period (n < k) order decision problems. We implement Lee's two-period model and the proposed k-period model for the use in receding horizon control style to solve n-period order decision problems, and compare between the two models in terms of the pattern of order quantities and the total profits. Our computational study shows that the proposed model is superior to the two-period model with respect to the total profits, and that order quantities from the proposed model have higher fluctuations over periods.

Modeling Optimal Lane Configuration at the Toll Plaza by Nonlinear Integer Programming Incorporated with an M/G/1 Queueing Process

  • Kim, Seong-Moon
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2006년도 추계학술대회
    • /
    • pp.403-406
    • /
    • 2006
  • This paper provides an M/G/1 queueing model for the operations management problem at the toll plaza. This queueing process is incorporated with two non-linear integer programming models - the user cost minimization model during the peak times and the operating cost minimization model during the off-peak hours.

  • PDF

재난 구호품의 효과적 분배를 위한 혼합정수계획 모형 (A Mixed-Integer Programming Model for Effective Distribution of Relief Supplies in Disaster)

  • 김흥섭
    • 산업경영시스템학회지
    • /
    • 제44권1호
    • /
    • pp.26-36
    • /
    • 2021
  • The topic of this study is the field of humanitarian logistics for disaster response. Many existing studies have revealed that compliance with the golden time in response to a disaster determines the success or failure of relief activities, and logistics costs account for 80% of the disaster response cost. Besides, the agility, responsiveness, and effectiveness of the humanitarian logistics system are emphasized in consideration of the disaster situation's characteristics, such as the urgency of life-saving and rapid environmental changes. In other words, they emphasize the importance of logistics activities in disaster response, which includes the effective and efficient distribution of relief supplies. This study proposes a mathematical model for establishing a transport plan to distribute relief supplies in a disaster situation. To determine vehicles' route and the amount of relief for cities suffering a disaster, it mainly considers the urgency, effectiveness (restoration rate), and uncertainty in the logistics system. The model is initially developed as a mixed-integer nonlinear programming (MINLP) model containing some nonlinear functions and transform into a Mixed-integer linear programming (MILP) model using a logarithmic transformation and piecewise linear approximation method. Furthermore, a minimax problem is suggested to search for breakpoints and slopes to define a piecewise linear function that minimizes the linear approximation error. A numerical experiment is performed to verify the MILP model, and linear approximation error is also analyzed in the experiment.

다제약식하에서의 최적중복설계에 관한 연구 (Redundancy Optimization under Multiple Constraints)

  • 윤덕균
    • 한국국방경영분석학회지
    • /
    • 제11권2호
    • /
    • pp.53-63
    • /
    • 1985
  • This paper presents a multi-costraint optimization model for redundant system reliability. The optimization model is usually formulated as a nonlinear integer programming (NIP) problem. This paper reformulates the NIP problem into a linear integer programming (LIP) problem. Then an efficient 'Branch and Straddle' algorithm is proposed to solve the LIP problem. The efficiency of this algorithm stems from the simultaneous handling of multiple variables, unlike in ordinary branch and bound algorithms. A numerical example is given to illustrate this algorithm.

  • PDF

공급사슬관리에서 생산입지선정 문제와 안전재고 최적화 문제의 통합모형 개발에 관한 연구 (A Study on Developing an Integrated Model of Facility Location Problems and Safety Stock Optimization Problems in Supply Chain Management)

  • 조건
    • 한국경영과학회지
    • /
    • 제31권1호
    • /
    • pp.91-103
    • /
    • 2006
  • Given a bill of materials (BOM) tree T labeled by the breadth first search (BFS) order from node 0 to node n and a general network ${\Im}=(V,A)$, where V={1,2,...,m} is the set of production facilities and A is the set of arcs representing transportation links between any of two facilities, we assume that each node of T stands for not only a component. but also a production stage which is a possible stocking point and operates under a periodic review base-stock policy, We also assume that the random demand which can be achieved by a suitable service level only occurs at the root node 0 of T and has a normal distribution $N({\mu},{\sigma}^2)$. Then our integrated model of facility location problems and safety stock optimization problem (FLP&SSOP) is to identify both the facility locations at which partitioned subtrees of T are produced and the optimal assignment of safety stocks so that the sum of production cost, inventory holding cost, and transportation cost is minimized while meeting the pre-specified service level for the final product. In this paper, we first formulate (FLP&SSOP) as a nonlinear integer programming model and show that it can be reformulated as a 0-1 linear integer programming model with an exponential number of decision variables. We then show that the linear programming relaxation of the reformulated model has an integrality property which guarantees that it can be optimally solved by a column generation method.

다목적 비선형 혼합정수계획법을 이용한 셀 형성 (Cell Formation Using Fuzzy Multiobjective Nonlinear Mixed-integer Programming)

  • 오명진
    • 산업경영시스템학회지
    • /
    • 제23권61호
    • /
    • pp.41-50
    • /
    • 2000
  • Cell formation(CF) Is to group parts with similar geometry, function, material and process into part families, and the corresponding machines into machine cells. Cell formation solutions often contain exceptional elements(EEs). Also, the following objective functions - minimizing the total costs of dealing with exceptional elements and maximizing total similarity coefficients between parts - have been used in CF modeling. Thus, multiobjective programming approach can be developed to model cell formation problems with two conflicting objective functions. This paper presents an effective cell formation method with fuzzy multiobjective nonlinear mixed-integer programming simultaneously to form machine cells and to minimize the cost of eliminating EEs.

  • PDF