• Title/Summary/Keyword: nonlinear inelastic behavior

Search Result 183, Processing Time 0.028 seconds

Constitutive Modeling of Confined High Strength Concrete (고강도 철근콘크리트 기둥의 구성모델)

  • Kyoung Oh, Van;Hyun Do, Yun;Soo Young, Chung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.445-450
    • /
    • 2003
  • The moment-curvature envelope describes the changes in the flexural capacity with deformation during a nonlinear analysis. Therefore, the moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. The moments and curvatures associated with increasing flexural deformations of the column may be computed for various column axial loads by incrementing the curvature and satisfying the requirements of strain compatibility and equilibrium of forces. Clearly it is important to have accurate information concerning the complete stress-strain curve of confined high-strength concrete in order to conduct reliable moment-curvature analysis to assess the ductility available from high-strength columns. However, it is not easy to explicitly characterize the mechanical behavior of confined high-strength concrete because of various parameter values, such as the confinement type of rectilinear ties, the compressive strength of concrete, the volumetric ratio and strength of rectangular ties, etc. So a stress-strain confinement model is developed which can simulate a complete inelastic moment-curvature relations of a high-strength reinforced concrete column

  • PDF

3-D Finite Element Analysis of Superplastic Blow Forming (초소성재료의 압력성형에 관한 삼차원 유한요소해석)

  • Lee, Ki-Seok;Huh, Hoon
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.55-63
    • /
    • 1994
  • The analysis of superplastic sheet forming process is studied by the use of the finite element method using a convected coordinate system and a skew boundary condition. In the formulation, the large inelastic behavior of the superplastic material is described as incompressible, nonlinear, viscous flow. The formulation is then approximated to the finite dimensional space with the use of membrane elements, which results in algebraic linear equations. In addition to the finite element formulation, a pressure cycle control algorithm is combined in the analysis for optimization of the forming time, which deals with the maximization of the strain rate sensitivity, the protection of the thickness reduction, the consistency of the desired strain rate and improvement of formability.

  • PDF

Analytic Investigation on Inelastic Behavior of Reinforced Concrete Frame with Seismic Detail (내진 상세 철근콘크리트 골조의 비탄성 거동에 관한 해석적 연구)

  • 박철용;이한선;김상대
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.466-472
    • /
    • 1996
  • The nonlinear analysis was perforned for a 2-bay 2-story moment-resisting reinforced concrete plane frame with seismic detail using KDARC 2D program. The analytical models consist of the material model, the member model, the hysteretic model, and the damage model etc. The conclusion based on the results of analysis is as following. : (1) Story shear-displacement relationship is similar to the experiment result but from the energy point of view, the analysis relationship is similar to the experiment result but from the energy point of view, the analysis result was different from the experiment result. (2) Plastic hinges were found to occur mainly in beams at first story while all the columns had plastic hinges throughout the structure. (3) Failure mode is a little different from experiment result in the yielding mechanism. (4) Damage index isabout 0.25. This means that the degree of damage is moderate and can be repairable.

  • PDF

Correlation between Analysis and Experiment on Inelastic Behavior of Reinforced Concrete Frame (철근콘크리트 골조의 비탄성 거동에 관한 실험 및 해석의 상관성)

  • 이한선;김상대;박철용
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.255-266
    • /
    • 1997
  • 본 논문의 목적은 내진상세를 가진 철근콘크리트 골조의 비탄성 거동 예측에서 현재 사용되고 있는 해석적 방법이 가지는 신뢰성을 검토하고 실험에서 실측할 수 없었던 내부 힘의 분포 및 변화과정을 관찰하는 것이다. 이를 위하여 이미 실험이 수행된 2경간 2층 내진상세 모멘트-저항 철근콘크리트 평면골조(1)를 대상으로 ICARC 2D 프로그램(3)을 사용하여비탄성해석을 수행하였다. 해석결과가 실험결과에 최대한 일치하도록 관련 모델 변수들을 조절하였다. 이러한 해석결과가 실험결과와 어느 정도 일치하는 지 비교하였으며, 해석결과 얻어진 내부 힘의 발전과정을 관찰한결과 다음과 같은 결론에 도달하였다. (1)전체 횡력-횡변위 관계는 실험결과에 매우 유사하게 해석결과를 얻을 수 있다. (2)구조물의 힘의 분포 및 재분재 과정에 관련하여 해석은 구체적인 정보를 제사하였으며 실험결과 나타난 균열 및 변형결과와 대체로 일치한 소성힌지 발생과 파괴메카니즘을 나타내어 그 유용성을 입증하고 있다. (3)해석결과가 대체로 실험결가아 일치하나 국부거동과 관련하여 일부분 실제거동과 상당한 차이를 나타내어, 보다 정확한 모델을 개발할 필요성을 느낀다.

Rheological Properties of Antiphlamine-S® Lotion (안티푸라민-에스® 로션의 레올로지 특성 연구)

  • Kuk, Hoa-Youn;Song, Ki-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.

Experimental study on hysteretic behavior of steel moment frame equipped with elliptical brace

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.891-907
    • /
    • 2020
  • Many studies reveal that during destructive earthquakes, most of the structures enter the inelastic phase. The amount of hysteretic energy in a structure is considered as an important criterion in structure design and an important indicator for the degree of its damage or vulnerability. The hysteretic energy value wasted after the structure yields is the most important component of the energy equation that affects the structures system damage thereof. Controlling this value of energy leads to controlling the structure behavior. Here, for the first time, the hysteretic behavior and energy dissipation capacity are assessed at presence of elliptical braced resisting frames (ELBRFs), through an experimental study and numerical analysis of FEM. The ELBRFs are of lateral load systems, when located in the middle bay of the frame and connected properly to the beams and columns, in addition to improving the structural behavior, do not have the problem of architectural space in the bracing systems. The energy dissipation capacity is assessed in four frames of small single-story single-bay ELBRFs at ½ scale with different accessories, and compared with SMRF and X-bracing systems. The frames are analyzed through a nonlinear FEM and a quasi-static cyclic loading. The performance features here consist of hysteresis behavior, plasticity factor, energy dissipation, resistance and stiffness variation, shear strength and Von-Mises stress distribution. The test results indicate that the good behavior of the elliptical bracing resisting frame improves strength, stiffness, ductility and dissipated energy capacity in a significant manner.

Assessing the effect of inherent nonlinearities in the analysis and design of a low-rise base isolated steel building

  • Varnavaa, Varnavas;Komodromos, Petros
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.499-526
    • /
    • 2013
  • Seismic isolation is an effective method for the protection of buildings and their contents during strong earthquakes. This research work aims to assess the appropriateness of the linear and nonlinear models that can be used in the analysis of typical low-rise base isolated steel buildings, taking into account the inherent nonlinearities of the isolation system as well as the potential nonlinearities of the superstructure in case of strong ground motions. The accuracy of the linearization of the isolator properties according to Eurocode 8 is evaluated comparatively with the corresponding response that can be obtained through the nonlinear hysteretic Bouc-Wen constitutive model. The suitability of the linearized model in the determination of the size of the required seismic gap is assessed, under various earthquake intensities, considering relevant methods that are provided by building codes. Furthermore, the validity of the common assumption of elastic behavior for the superstructure is explored and the alteration of the structural response due to the inelastic deformations of the superstructure as a consequence of potential collision to the restraining moat wall is studied. The usage of a nonlinear model for the isolation system is found to be necessary in order to achieve a sufficiently accurate assessment of the structural response and a reliable estimation of the required width of the provided seismic gap. Moreover, the simulations reveal that the superstructure's inelasticity should be taken into account, especially if the response of the structure under high magnitude earthquakes is investigated. The consideration of the inelasticity of the superstructure is also recommended in studies of structural collision of seismically isolated structures to the surrounding moat wall, since it affects the response.

Seismic performance of a wall-frame air traffic control tower

  • Moravej, Hossein;Vafaei, Mohammadreza;Abu Bakar, Suhaimi
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.463-482
    • /
    • 2016
  • Air Traffic Control (ATC) towers play significant role in the functionality of each airport. In spite of having complex dynamic behavior and major role in mitigating post-earthquake problems, less attention has been paid to the seismic performance of these structures. Herein, seismic response of an existing ATC tower with a wall-frame structural system that has been designed and detailed according to a local building code was evaluated through the framework of performance-based seismic design. Results of this study indicated that the linear static and dynamic analyses used for the design of this tower were incapable of providing a safety margin for the required seismic performance levels especially when the tower was subjected to strong ground motions. It was concluded that, for seismic design of ATC towers practice engineers should refer to a more sophisticated seismic design approach (e.g., performance-based seismic design) which accounts for inelastic behavior of structural components in order to comply with the higher seismic performance objectives of ATC towers.

Composite Beam Element for Nonlinear Seismic Analysis of Steel Frames (강재 골조의 비선형 지진해석을 위한 합성 보 요소)

  • Kim, Kee Dong;Ko, Man Gi;Yi, Gyu Sei;Hwang, Byoung Kuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.577-591
    • /
    • 2002
  • This study presented a composite beam element for modeling the inelastic behavior of the steel beam, which has composite slabs in steel moment frames that are subjected to earthquake ground motions. The effects of composite slabs on the seismic behavior of steel moment frames were investigated. The element can be considered as a single-component series hinge type model whose predicted analytical results were consistent with the experimental results. Likewise, the element showed a significantly better performance than the bare steel beam elements. The composite model can also predict more accurately the local deformation demands and overall response of structural systems under earthquake loading compared with the bare steel models. Therefore, composite stabs can significantly affect locally and globally predicted responses of steel moment frames.

Finite Element Analysis of Inelastic Behavior of SRC Composite Piers (SRC 합성교각의 비탄성거동에 대한 유한요소해석)

  • Shim, Chang-Su;Han, Jung-Hoon;Park, Chang-Kyu;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.269-275
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is one of the most important design criteria. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcement such as hoop ties closely. Concrete encased composite columns can be utilized for bridge piers especially in seismic area. In this paper, finite element analyses are performed to study the nonlinear behavior of concrete encased composite columns with single core steel or multiple steel elements under static and quasi-static loads. The cross-sections of these specimens ate composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcement, encased steel member, and loading axis. Through the comparison between FE analyses and test results, adequate material models for confined concrete and unconfined concrete ate investigated. After getting the proper analysis models for composite columns, several parameters are considered to suggest design considerations on the details of composite piers.

  • PDF