A Fx9 vAE ARFH S A F H 8L
Composite Beam Element for Nonlinear Seismic Analysis of Steel Frames
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ABSTRACT : This study presented a composite beam element for modeling the inelastic behavior of the steel beam, which

A
E!

has composite slabs in steel moment frames that are subjected to earthquake ground motions. The effects of composite
slabs on the seismic behavior of steel moment frames were investigated. The element can be considered as a
single-component series hinge type model whose predicted analytical results were consistent with the experimental resuits.
Likewise, the element showed a significantly better performance than the bare steel beam elements. The composite model
can also predict more accurately the local deformation demands and overall response of structural systems under
earthquake loading compared with the bare steel models. Therefore, composite slabs can significantly affect locally and
globally predicted responses of steel moment frames.
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1. GENERAL

Moment resisting frames (MRFs) designed according
to current building codes 1997:
Structural 1996) are expected to deform well into the
inelastic range during severe earthquake ground

(International

motions. The design philosophy for seismic resistant
steel MRFs adopted by building codes discourages
the formation of plastic hinges in the clear span
portion of columns, while encouraging the formation
of hinges in beams or in beam-column joints. Thus,
accurate modeling of random cyclic inelastic response of
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members subject to bending, but without significant
axial force (i.e., beams), is essential for accurate
modeling of MRF response. The accurate modeling of
inelastic response of beams during earthquake
excitations depends on the development of reliable
analytical elements which describe the hysteretic
behavior of the critical regions at the ends of beams.
The development of such an analytical model for
composite beams and its application are the subject of
this study.

While
designed as bare steel member action under lateral

beams in moment frames are usually
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loads, significant composite action can exist due to
shear studs that are provided to transfer diaphragm
forces and/or welds that attach the metal deck to the
beams. Additionally, at the beam-column connection
the slab can have a significant impact on the local
force transfer and the behavior of the connection and
panel zone. Composite beam action is one of several
effects that increase the stiffness of the structure and
contribute to more accurate calculation of the
characteristic vibration frequencies. In Fig. 6, the
overall response predicted by an analysis modeling
the composite beams using the multi-linear hinge
element for bare steel beams (Kim 2000) is compared
with the experimental data (Wenk 1977). From this
figure, it can be seen that by ignoring the effect of the
concrete slab, the overall stiffness and strength of the
test frame are significantly underestimated. If the
composite beam action is likely to exist whether or
not the frame is designed compositely, composite
action should be considered to more accurately predict
the overall and local behavior of MRFs under
earthquake motions.

A composite beam shows complex behavior due to
slip between the concrete slab and the steel beam,
and the variation of longitudinal stress across the
width of the slab, which is dependent on the joint
details and the loading pattern. To ideally model the
behavior of composite beams during earthquake
loading,
three-dimensional finite element analysis can most

these factors should be considered. A

accurately model the behavior of composite beams,
but it is computationally inefficient for inelastic
earthquake analysis of multistory MRFs. Also, the
behavior of shear connectors is not fully understood,
especially under arbitrary cyclic loading, even though
many researchers (Slutter et al. 1965: Ollgaard et al.
1971: Grant et al. 1977) have studied the behavior of
shear studs under monotonic loading. And it is also
very difficult to define the crushing effect of concrete
at a joint on the stiffness and strength of beams, and
the bonding behavior between reinforcing bars and
concrete under arbitrary cyclic loading.

Modeling of the seismic response of composite
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beams by a two-dimensional structural element is a
difficult task. The longitudinal membrane stress is
not uniform across the width of the concrete slab. The
effective width, which accounts for the non-uniform
longitudinal stress pattern, varies along the beam,
and changes as the moments in the beam change
during loading history. Since the non-uniform
effective width along the length of the beam changes
during the loading history, a two-dimensional model
that employs the stress-strain or moment-curvature
relation does not warrant the exact prediction of the
response of composite beams. Moreover, a measure of
inelastic behavior in terms of strains and curvatures
can be problematic because they are not directly
converted into equivalent plastic rotations that are a
more common measure of ductility demands in frames.

Some researchers (Ricles 1987: Lee 1987) have

developed two-dimensional discrete member elements

as a compromise between simplicity and accuracy,
which employ a hysteretic model describing the
moment-rotation relationships of composite beams. In
these models, it is assumed that the influence of slip
and the variation of longitudinal membrane stress on
the behavior of composite beams can be implicitly
included in the moment-rotation relationships of
composite beams. In this study, based on observations
from the experimental behavior of composite beams
and existing composite beam models, a composite
beam element is developed. The element can be
considered as an one-component series hinge type model.
It employs nonlinear force-deformation relationships
and accounts for the influence of a moving inflection
point on the beam element stiffness. This element is
intended to represent the clear span portion of beams
in steel moment frames, and does not consider the
geometric nonlinearity effects.

2. GENERAL DESCRIPTION

The two dimensional composite beam element
consists of a linear elastic composite beam element
with a nonlinear hinge at each end. To facilitate the
discussion, this element will be referred to as the



“complete element,” consisting of both hinges and the
elastic composite beam element. The hinges are
considered to have zero length. Inelastic behavior due
to yielding under moment is concentrated in the
hinges. Both hinges are assumed to be initially rigid.
Therefore the initial stiffness of the complete element
is that of the elastic composite beam element. As the
forces at the element ends increase, the hinges can
yield. resulting in a reduced stiffness of the complete
element. Under increasing deformation, the hinge
strains harden, following the nonlinear force-deformation
relationships.

Each hinge rigid-plastic
moment-rotation relationships in an attempt to more

possesses nonlinear
closely mimic experimentally observed behavior. To
produce a reduced stiffness for the complete element
at any load step after yielding, the instantaneous
tangent flexibility of the nonlinear rigid-plastic
force-deformation relationships for a hinge are combined
with the flexibility for the elastic composite beam
element.

Since the behavior of composite beam varies according
to the direction of moment due to non-symmetric
section, a hinge should discern the load paths to
model the hysteresis behavior of composite beam for
arbitrary cyclic loading. Hysteretic rules employed for
this composite beam element, which take into account
strength
deterioration, stiffness degradation, and so forth,
guide a hinge to discern the load paths and to follow
the specified nonlinear moment-rotation relationships.

the influence of non-symmetric section,

3. DEGREES OF FREEDOM

The complete element has two external nodes and
two internal nodes. The internal nodes exist at the
end of the elastic element. The hinges connect the
internal nodes with the external nodes. The external
nodes connect to the global structure and each have
three degrees of freedom, namely translations and
rotation in the local coordinate system, as shown in
Fig. 1. In the local coordinate system, if the rigid
body motions are removed, the element can be
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considered as a simply supported beam. On the basis
of equilibrium, all the components of local nodal forces

R(R, to Rg) can be computed from the values of
relative forces s(s;s;and s3). The transformation

from the relative forces s to the nodal forces R is
defined as

R=A-s 1)

where A is the force transformation matrix, which
is well known and can be found in the literature
(Przemieniecki 1968). From geometry, the transformation
relative

from the local displacements r to the

deformations v (v;v;and v3) is accomplished by

Fig. 1 Element Relative Forces and Deformations in
Local Coordinate System

v= A" -r (2a)

where I'TZ{Ui,Vi,ﬁi,Uj,Vj,Hj} (2b)
4. COMPLETE ELEMENT STIFFNESS

A flexibility matrix f is first formed for the elastic
element which includes the effects of shear, as
follows:

dq=f-ds (3a)

where dq(dq;,dq,, and dgs) is the elastic deformation

increment at the internal nodes and ds is the action
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increment, in which
ds” ={dF,dM",dM’} = {ds,,ds,,dss}  (3b)

For the hinges at nodes I and J, the incremental
action-deformation relationship can be expressed as

0 dVl“d(h
dw,=] dé, =[dv2—dq2}= fo-ds  (4)
de’ dv;—dqs

where dw, is the vector of plastic hinge deformations
at nodes I and J. d4] and d@} are the incremental

plastic rotation at nodes I and J, and f, is the hinge

or plastic flexibility matrix in which nonzero terms
are the second and third elements in diagonal. Using
Egs. 3a and 4, the action-deformation relationship is
obtained for the complete element expressed in terms

of the degrees of freedom v.
dv=dq+ dw,= F, - ds (5)

The hinge flexibility coefficients of f, can be
simply added to the appropriate coefficients of the
elastic element flexibility matrix f in order to obtain
the tangent flexibility matrix F, for the complete
element. Having determined the 3x3 tangent flexibility
matrix F,, this matrix is inverted to obtain a 3x3

tangent stiffness matrix K, .

5. HYSTERETIC RULES

Hysteretic rules are basically intended to take into
account the effect of concrete slab on the hysteresis
behavior of steel beam, and are determined from the
observation of available experimental data and the
modification of the existing models (Ricles 1987: Lee
1987). For monotonic loading, two bilinear moment-
rotation relationships as shown in Fig. 2a are emploved
to consider non-symmetric section and the early crack

of concrete slab under the negative moment. For
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cyclic loading, the basic cyclic moment-rotation
relationships of steel beam are modified to consider
the effect of concrete slab according to crack closing
and opening as shown in Fig. 2b.

The basic parameters to describe the monotonic
moment-rotation relations are elastic stiffness, inelastic
stiffness, and yield moment for positive and negative
moments, respectively. These parameters are determined
through calibration to available experimental data
(Uang 1985: Lee 1987: Tagawa 1986, 1989).

The elastic stiffness of an equivalent cantilever
composite beam representing the length from the
one end of beam to the inflection point under a
linear moment distribution is K [ =3EI*/L* and

Monotonic Envelope Curve

O /A

Negative
sh Inelastic Curve

a) Monotonic modsl and Stiffness Degradation for
Negative Moment

M
AB_= plastic rotation
p .
accumulated M}
forpath A-D

Positive .
Inelastic Curve K.

b) Stiffness Degradation and Pinching for Positive
Moment

Fig. 2 Proposed Hysteretic Moment-Rotation Mode!
of Composite Beam



K. =3EI /L™ for each of positive and negative

moments in which L' and L™ are the length of
equivalent cantilever beam under positive and
negative moments, respectively. It should be noted
that the term elastic of the negative elastic stiffness
is used to represent the elastic behavior of steel beam
after the early crack of concrete slab under the
negative moment. The strain-hardening stiffnesses
for positive and negative bending moments are
expressed as fractions of the respective elastic stiffnesses
as follows: K4=0.025- K/ and K5=0.05- K. .

The effective width of the concrete slab b4 on each
side of the beam center-line for computing positive
elastic stiffness is determined by the minimum of
L/8, b,/8, and b, (LRFD Specification 1994) in
which . is the beam span., center to center of
supports, b, is the distance from the beam center-line
to the center-line of the adjacent beam, and b, is the
distance from the beam center-line to the edge of the
slab. Using the effective concrete slab width, the
moment of inertia of a composite section I, is
calculated. To account for the influence of slip
between the concrete slab and the steel beam on the
positive elastic stiffness, the moment of inertia I*
applied to the positive elastic stiffness is assumed to
be a fraction of I,,. From the available experimental
results, it has been found that I equal to 0.85 - I, is
reasonable. To obtain the moment of inertia I” used
for the negative elastic stiffness, the steel beam
section and reinforcing steel bars within the effective
slab width are considered.

The negative yield moment M, of the monotonic
model shown in Fig. 2a is the plastic moment of both
the steel beam section and reinforcing steel bars
within the effective width. The positive yield moment

M, is assumed to be a fraction of the ultimate
moment at the connection, which can be estimated
based on the plastic stress distribution. The contribution of
the concrete slab to the ultimate moment M., at the
connection is determined by using the column width
b and the concrete compressive bearing stress of
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1.3f, due to the confinement of concrete near the
column (duPlessis et al. 1973). For the exterior
joints, the plastic neutral axis is determined by
solving the following equation for compressive steel
area, Ay

20, F,=A,F,—1.3f bt.—A,F,, (6a)

From Eq. 6a, the ultimate moment at the connection
is written as

t.
A
+ (A~ APDF v, + A F,y,

M ,;ax = 1.3f ;:bcftCYn(l - ) +AFyye

(6b)

where y, = distance from the plastic neutral axis
to the top surface of the slab: vy = distance from the

plastic neutral axis to the compression resultant of
steel; vy, = distance from the plastic neutral axis to

the tension resultant of steel: v, = distance from the
plastic neutral axis to the compression resultant of
reinforcing bars: by = column flange width: t. =
concrete slab thickness from the top surface to the
top of metal deck: A, = total steel area; A, = area

of reinforcing bars within the effective slab width: F,,
= yield stress of reinforcing bars.
To determine the ultimate moment M/, at the

interior joints, a method based on tension yield of
reinforcing bars unlike the exterior joints is employed
(Wenk 1977). In this method it is assumed that
under lateral loads the reinforcing steels in the
positive moment region of an interior joint are
governed by the tension yield of reinforcing steels in
the negative moment region of the other side. The
stress distribution of the composite section in the
positive moment region of the interior joint is the
same as that of the exterior joint with the exception
that the compression force of reinforcing bars is
changed into the tension force. The resultant
maximum slab force is equal to 1.3f,;bcftc~A,Fy,.

The plastic neutral axis is determined by solving the
following equation for compressive steel area, A..:

sRuRxes =28 M 142 55(83 605) 20024 108 581
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2AF,=AF,—1.3f bt . +AF, (7a)

From the modified stress distribution and Eq. 7a,
the ultimate moment at the interior joint is written as

t
2¥Yn
+(A—AJFy.— A F,y,

M: = 1.3f;bdtcy,,(1— )+ASCFnyC

(7b)

From the available experimental data, it has been
found that the positive yield moment M, of 0.95M ..
is reasonable.

In the hysteretic moment-rotation model of a
composite beam shown in Fig. 2, the hysteresis
behavior of steel beam is bounded by the positive and
negative bound lines, and after crack closing the
behavior of composite section is bounded by the
positive moment envelope curve. An inclined neutral
line, which has the slope K g and passes through the
origin of the coordinate system, represents the
location of crack opening on the unloading path from
the behavior of composite section.

The stiffness degradation in the negative moment
region is illustrated in Fig. 2a. The factor @ defines
the ratio of the negative linear elastic range to the
negative yield moment. The factor @ is determined
empirically by examining the available experimental
results and is chosen to be a=0.5. Figure 2b shows
the stiffness degradation, pinching, and strength
deterioration for the positive moment region. The
stiffness degradation begins at the inclined neutral
line. The effect of pinching and strength deterioration
are represented, respectively, by the y and 8 factors,
which are determined empirically to be y=0.2 and

8=0.05. It is noted that whenever the crack starts
to close (point F) after the crack opens, the reloading
path will follow the linear crack closing line F-A’.

The negative and positive inelastic curves (lines
C-D and E—F) are described by the plastic stiffness
obtained by using the normalized shape factor h
(Dafalias 1975). The plastic stiffness Ki at an

arbitrary point X on the inelastic curve shown in Fig.
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2b is a function of the normalized shape factor h. The
plastic stiffness K; is determined from the following

s n X

where &; is the initial distance between the

starting point of the inelastic curve and the
corresponding point on the bound line, 8, is the
distance between an arbitrary point X on the inelastic
curve and the corresponding point on the bound line,

and Kg* is the plastic stiffness of the bound line. The

procedure to determine the normalized shape factor h
is as follows: 1) choose an arbitrary point X such that
1/10<6,/8:,<1/2, ii) calculate the shape factor from
h=68,/0;+(8/0;) - [In(8:/8,)—1] in which &% is
the plastic rotation at an arbitrary point X, and iii)
normalize the shape factor by the plastic stiffness of
the bound line h=h/K 4".

By applying the above procedure to the available
experimental data, it has been determined that the
normalized shape factors. h, and h, were chosen as
10 and 6, respectively, for the positive and negative
inelastic curves as shown in Figs. 2a and 2b.

The composite beam element is a one-component
series hinge model and has the capability to account
for the influence of a moving inflection point on the
element stiffness. It is assumed that the inflection
point does not change during a small load or time
step and the inflection point obtained at the end of
the previous load step can be applied to the next load
step. At the end of a load step, the inflection point is
determined from the linear moment distribution
induced by earthquake motions alone, under the
assumption that the moment distribution due to the
gravity load is not significant when compared with
that due to earthquake excitations.

According to the inflection point obtained at the
end of the previous load step, the lengths L' and L’
are determined, where L' is the length of equivalent
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Fig. 3 Comparison of Experimental and Analytical Resuits

cantilever beam from the beam end [ to the inflection
point and L’ is the length from the inflection point to
the beam end J. It is then assumed to determine the
stiffness of the complete element at the current load
step that the flexural rigidity of the elastic beam
element is the elastic flexural rigidity of the
composite beam EI", and the two plastic hinges at
the member ends I and J represent inelastic flexural
deformation within the lengths of equivalent cantilever
beam L' and L’. Thus, the flexibility of each of the
two plastic hinges at the current load step is defined as:

plol 1 LU
P
Ki~ K! 3EI (%)

for plastic hinge of end I

11 L’
T
for plastic hinge of end J

fl=

where K! is the tangent stiffness of the hysteresis
moment-rotation model based on the equivalent
cantilever length L', and K] is the tangent stiffness

based on the length L’. It is noted that for the first
load step for which the moment distribution is not
known, an iteration procedure with the initial guess
for the equivalent cantilever lengths is used to obtain
proper equivalent cantilever lengths for the following
load steps.

6. COMPARISON TO TEST DATA FOR
BEAM MEMBERS

To investigate the performance of the composite
beam element, analytical resuits are compared with
test results for a small-scale specimen CG3 (Uang
1985), full-scale specimens EJ-WC (Lee 1987), and
Tagawa 86 and 89 (Tagawa 1986; 1989). The beam
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section properties of the specimens are listed in Table
1 and the other details can be found in the above

literatures. In Table 1, Igeq and Mjare the moment

of inertia and the plastic moment of steel beam,
respectively. From this table, it can be noted that
relatively shallow beams are used for test specimens
and concrete slabs significantly increase the stiffness
and strength of beams in the positive moment region.

Figure 3 shows comparisons between composite
beam predictions (CB) and test results for the above
specimens. Results are also compared with the bare
steel elements: the multi-linear beam-column element
(MSB) and the bilinear beam-column element (BSB),
which is most widely used for inelastic dynamic
analysis (Kanaan and Powell 1973) and of which the
strain hardening stiffness is taken as 3% of the
elastic stiffness.

Figure 3a shows the comparison of experimental
and analytical results of Lee's specimen EJ-WC. The
specimen was an exterior joint assemblage, and its
beam was connected to the column web by connecting
plates. The comparison of experimental and analytical
results of Uang’s specimen CG3 is presented in Fig.
3b. The comparisons of composite beam predictions
and experimental results show good agreement until
the bottom flange of steel beam develops severe local
buckling. The bare steel beam elements provide much
lesser strength and stiffness than the experimental
results as expected from Table 1. The multi-linear
steel beam element shows smoother transition from
elastic to inelastic region and little more strength
than the bilinear steel beam element.

Table 1. Section Properties of Test Specimens

. Beam Slab " +

Specimen | - . ition | Thickness(em) ! M,

EJ-WC W18X35 8.89 2.5lgteer 1.9M,

CG3 M6X4.4 2.54 3. Olsteet 2.1M,
H300X150

Tagawa 86 X4 5X6 10 4.6lsteel 2.2M,

Tagawa 83| W14X30 9 2.9 5teel 1.5M,
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The correlations of the experimental and analytical
results for specimens Tagawa 86 and 89 are shown in
Figs. 3c and 3d. The analytical and experimental
results are the beam moment-rotation relations at
point A of the subassemblages shown in Figs. 3c and
3d. In the analysis of specimen Tagawa 86, the yield
stress of reinforcing bars was assumed to be that of
the steel beam because the yield stress of reinforcing
bars was not available. In specimen Tagawa 89 the
response of a beam framing into an interior joint was
investigated. The agreement between the experimental
data and composite beam predictions is reasonable
except that for specimen Tagawa 89 the composite
beam element overestimates the strength for small
amplitudes of rotation even though the ultimate
moment based on tension yield of reinforcing bars was
applied. The bare steel beam elements significantly
underestimate the strength and stiffness of the
beams.

From the comparisons, it has been shown that the
hysteretic rules of the composite beam element can
reasonably model the strength, stiffness, pinching,
and stiffness degradation of a composite beam until
local buckling of the beam bottom flange occurs. The
composite beam element clearly provides significantly
better correlation with the test data as compared with
the bare steel beam elements. The bare steel beam
elements cannot properly provide the increase of
strength and stiffness due to concrete slab for shallow
beams.

7. COMPOSITE PANEL ZONE ELEMENT

In many practical cases, the panel zone can
dominate the inelastic response of a moment frame. It
was reported (Lee 1987 Kim 2002) that the presence
of a composite concrete floor slab could significantly
affect panel zone behavior, particularly for relatively
shallow beams. Therefore, accurate panel zone models
that can account for the effect of composite slabs on
the behavior of panel zones are needed to realistically
predict overall frame performance. To take into
account the effect of composite slabs on the behavior



of panel zones, a composite panel zone model (Kim
2002) was developed for the monotonic and cyclic
behavior of beam-to-column joints in steel moment
frames with composite floor slabs. This model is
based on the concept of representing the panel zone
as a nonlinear rotational spring and can consider the
increase in the effective depth of the panel zone due
to the presence of the concrete slab. This composite
panel zone element combined with the developed
composite beam element will be applied to investigate
the effects of composite slabs on the behavior of steel
subassemblages and frames with concrete slabs.

To investigate the performance of the composite
panel zone element (CPZ), analytical results are
compared with test results for Lee’s specimen EJ-FC
(Lee 1987) in Fig. 4. Also shown in this figure are
the analytical predictions using the bare steel panel
zone elements: the nonlinear steel panel zone element
(NPZ) (Kim 2002) and the bilinear steel panel zone
element (BPZ),
inelastic dynamic analysis and of which the strain
hardening stiffness is taken as 3% of the elastic
stiffness. It is clear from Fig. 4 that the composite

which is most widely used for

panel zone element shows much better correlation
with the test data than the bare steel panel zone
elements for both small and large amplitudes of
deformations. The bilinear steel panel zone element
substantially underestimates panel zone strength
more than the nonlinear steel panel zone element.
More extensive comparisons can be found in Kim and
Engelhardt (2002).

Load, P (kN)

T
-0.08 -0.04 002 0.00 0.02 0.04 0.06
Panel Zone Rotation, y(rad.)

Fig. 4 Comparison of Model Predictions and Test Results
for Local Panel Zone Response of Specimen EJ-FC
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8. COMPARISON TO TEST DATA FOR
ASSEMBLAGES

To investigate the interaction of the composite
beam and composite panel zone elements described
above, the elements are combined into steel
subassemblages and frame with concrete slab, such as
Lee’s specimens EJ-FC and [J-FC, Engelhardt’s
specimens DBWP-C (Engelhardt 2000a) and UTA-FF
(Engelhardt 2000b), and a one-story and two-bay
frame specimen CA-1 (Wenk et al. 1977). The beam
section properties of the specimens are listed in Table
2. From this table, it can be seen that the increase of
the stiffness and strength of beams in the positive
moment region due to concrete slab is much lesser for
specimens DBWP-C and UTA-FF because of the
rather deep W36x150 beams used for these specimens
than for the other specimens.

Figure 5 shows comparisons between composite
model predictions and test results for the overall load
displacement response for the above specimens. The
composite model (CM) consists of the composite beam
and composite panel zone elements, and the multi-
linear steel beam-column element. Results are also
compared with the bare steel models. In refined bare
steel model (RSM), both beams and columns are
modeled using the multi-linear steel beam-column
element, and panel zones are modeled using the
nonlinear steel panel zone element. In basic bare
steel model(BSM), both beams and columns are
modeled using the
element, and panel zones are modeled using the
bilinear steel panel zone element.

bilinear steel beam-column

Table 2. Beam Section Properties of Test Specimens

e Slzitai?n Thickil:sbs {cm) r M;
EJ-WC | W18X35 8.89 2.5Isteet | 1.77Mp
1J-FC W18X35 8.89 2.5Iste | 1.80M;
DBWP-C | W36X150 8.89 1.2Istear | 1.08Ms
UTA-FF | W36X150 8.89 1. 255t | 1.13M,
CA-1 W10X19 8.89 2.8lsteer | 1.60M,
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Fig. 5 Comparison of Model Predictions and Test Results for Overall Response

Figures 5a and 5b show comparisons for specimens
EJ-FC and IJ-FC. From these figures, it has been
shown that the composite model clearly provides
significantly better correlation with the test data as
compared with the bare steel models. The bare steel
models cannot properly model the experimentally
observed behavior due to the effect of composite
slab after crack closure. The refined steel model
underestimates the overall strength by about 26 %
for specimen EJ-FC and by about 15 % for specimen
IJ-FC. The bilinear steel model provides much lesser
strength than the refined steel model.

In Figs. 5¢ and 5d. the model predictions are
compared with test results for specimen DBWP-C and
UTA-FF. The performance of the composite and
refined steel models provide reasonable correlation
with experimental data. From Table 2 and the fact
that the refined steel model prediction matches well
with experimental data, it can be deduced that there
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is little effect of the composite slab on the response of
beams due to the rather deep W36x150 beams used
for these specimens. Even if the effect of concrete slab
is negligible for specimens DBWP-C and UTA-FF, the
bilinear steel model substantially underestimates
overall strength in the latter cycles of loading.
Figure 6 compares the overall response predicted
by the test and the analysis for Wenks specimen
CA-1. Since specimen CA-1 was designed for the

Table 3. Plastic Rotations for Specimen UTA-FF

Total Panel Zone Beam Column
Model Plastic Plastic Plastic Plastic
Rotation Rotation Rotation Rotation
(rad.) (rad.) (rad.) (rad.)
Test 0.033 0.017 0.011 0.005
CM 0.037 0.022 0.015 0.0
RSM 0.037 0.033 0.003 0.0
BSM 0.039 0.038 0.001 0.0
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Fig. 8 Comparison of Model Predictions and Test Data for Local Response of Specimen UTA-FF

yielding to be confined to the composite beams, and
the panel zones of the specimen were diagonally
braced to remain elastic throughout the test, it is
assumed that the columns and panel zones remain
elastic during the analysis. As far as the monotonic
behavior is concerned, the composite model overestimates
the strength by about 6 %. The unloading elastic
stiffnesses after the first half cycle of loading
predicted by the composite model do not match well
with that predicted by the test. However, for the rest
of loading cycles the unloading elastic stiffnesses
predicted by the analysis match well with that
predicted by the test. The composite model exhibits
more reasonable performance as a whole as compared
to the bare steel models. The bare steel models
underestimate the overall stiffness and strength of
the test frame by about 40 % and 30 %, respectively.

The comparisons of local responses obtained by

displacement control for the overall displacement of
the subassemblages are presented in Figs. 7 and 8.
The local panel zone responses for specimen [J-FC
are presented in Fig. 7. In Figs. 8a and 8b the local
panel zone responses and beam responses for
specimen UTA-FF are shown. From Fig. 7, it can be
seen that all three models provide approximately the
same panel zone rotations, which are little smaller
than the experimental data. All three models showed
that yielding was confined to the panel zone, as in the
test. For specimen UTA-FF. the composite model
predicted little smaller panel zone rotations than the
experimental data, while the refined steel model
predicted little larger panel zone rotations and the
basic steel model provided much larger panel zone
rotations. As far as the beam rotations are concerned,
the composite model predicted little larger rotations
than the experimental data, while the refined steel
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model predicted much lesser rotations and the basic
steel model showed very limited plastic rotations. All
three models showed that there was no yielding in the
columns. In Table 3 the plastic rotations predicted by
the analytical models and the test are shown. From
this table, it can be seen that all three models
predicted approximately the same total plastic
rotation (panel zone + beam + column) at the joint,
which is little larger than the experimental data, as
for specimen 1J-FC. However, the distribution of total
plastic rotation at the joint between the beam and
panel zone is significantly different for the three models.
Consequently, for the same overall displacement, the
three models predicted significantly different local
plastic rotation demands. For the yielding to be
properly distributed between the elements during the
analysis, the analytical elements for the structural
components should be able to accurately model the
mechanical behavior of the structural components
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because even the displacement increment for
infinitesimally small force increment may be large in
the inelastic range due to a small stiffness. Since the
composite model has the capability to more accurately
define the mechanical behavior of the structural
components, the local deformations predicted by it are
much better than those obtained by the other models.

9. DYNAMIC ANALYSIS

In order to examine the effects of composite beam
elements on predicted structural response, dynamic
analyses were conducted for a six story, single bay
steel moment frame subject to three strong ground
motion records: the Sylmar record of the 1994
Northridge Earthquake, the Lucerne record of the
1992 Landers Earthquake, and SCT-1 record of the
1985 Mexico City Earthquake. In this study, the
previous three models were applied: the composite,
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Fig. 9 Responses of Composite and Bare Steel Modeis for Sylmar Record
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Fig. 10 Responses of Composite and Bare Steel Models for SCT-1 and Lucerne Records

the refined steel, and the basic steel models. For all
three models, mass and stiffness proportional damping
coefficients were chosen to provide 2% of critical
damping in the first and fourth modes and 40%
doubler plate participation was used in the panel
zone. The key features of the moment frame used in
this study can be found in detail in the literature
(Engelhardt and Kim 1995).

The response of models for the Sylmar record is
shown in Fig. 9. This figure indicates that there are
significant differences in the predicted response for
the models. The differences are particularly large in
the roof displacement histories (Fig. 9a) and in the
beam plastic rotation plot (Fig. 9b) and in the panel
zone response plot (Fig. 9¢). In Figs. 9d and 10a the
maximum story drift ratios for the three records are
presented. The composite model provides stiffer
behavior than the bare steel models for all three
records and for the Lucerne record it shows
significantly stiffer behavior. Figures 9d and 10b
show the ratio of inelastic maximum story drift to
elastic maximum story drift for the three records.
This ratio of all three models is less than the value of
0.7 for the Sylmar and SCT-1 records, while for the
Lucerne record the ratio is generally greater than the
value of 1. For the Sylmar and SCT-1 records, there
appear to be no consistent trends in the correlations
of the ratios for the composite and bare steel models.
For the SCT-1 record, this ratio for the composite
model is about half of that for the bare steel models.

This large difference can be attributed to the fact that
this record has a large peak in its acceleration
response spectrum at about a 2 second period, which
is much closer to the first mode natural period of
1.909 seconds for the composite model than that of
2.214 seconds for the bare steel models. For the
example frame, the difference of about 16% in the
computed natural period is obtained due to the
presence of composite slab. For all three records,
there are large differences in the beam plastic
rotations predicted by the three models at many
joints on the order of 20% to 85% of each other
without consistent trends.

The differences found in structural response
predictions for the three models vary among the three
records. There appear to be few, if any, consistent
trends in how the composite model compares with the
bare steel models among the three records. This
suggests that the significance of effects of concrete
slab on earthquake responses of MRFs is earthquake
dependent. The differences in the predicted responses
of the three models for the same ground motion is due
both to differences in modeling inelastic behavior, as
well as to differences in structural demands arising
from the different natural periods of the models.
When modeling steel moment frames, the accuracy of
modeling for beams with composite slabs can have a
significant effect on the locally and globally predicted
responses.
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10. CONCLUSION

The objective of the study in this paper was to
develop a composite beam element to model steel
beam with composite slabs during severe earthquake
ground motions and to investigate the effects of
composite slabs on seismic behavior of steel moment
frames. The element can be considered as a
one-component series hinge type model and it can
reasonably model the strength, stiffness, pinching,
and stiffness degradation of a composite beam. The
composite beam element provides significantly better
correlation with the test data as compared with the
bare steel beam elements. The composite model can
more accurately predict local deformation demands
and overall response of structural systems under
earthquake loading than the bare steel models.
Composite slabs can significantly affect the global and
local responses of steel moment frames. The significance
of effects of concrete slab on earthquake responses of
steel moment frames seems to be earthquake dependent.
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