• Title/Summary/Keyword: nonlinear hyperbolic systems

Search Result 17, Processing Time 0.033 seconds

OPTIMIZATION AND IDENTIFICATION FOR THE NONLINEAR HYPERBOLIC SYSTEMS

  • Kang, Yong-Han
    • East Asian mathematical journal
    • /
    • v.16 no.2
    • /
    • pp.317-330
    • /
    • 2000
  • In this paper we consider the optimal control problem of both operators and parameters for nonlinear hyperbolic systems. For the identification problem, we show that for every value of the parameter and operators, the optimal control problem has a solution. Moreover we obtain the necessary conditions of optimality for the optimal control problem on the system.

  • PDF

RECENT DEVELOPMENTS IN NONLINEAR HYPERBOLIC PDE

  • Christodoulou, Demetrios
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.843-852
    • /
    • 2001
  • In this lecture I shall discuss some recent progress in the development of methods for attacking the central questions of the formation and structure of singularities and of global regularity for solutions of the Cauchy problem for nonlinear systems of partial differential equations of hyperbolic type. Applications to the Einstein equations of general relativity and to the equations of compressible fluid flow shall be particularly emphasized and detailed.

  • PDF

A Study on a Stochastic Nonlinear System Control Using Hyperbolic Quotient Competitive Learning Neural Networks (Hyperbolic Quotient 경쟁학습 신경회로망을 사용한 비선형 확률시스템 제어에 관한 연구)

  • 석진욱;조성원;최경삼
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.346-352
    • /
    • 1998
  • In this paper, we give some geometric condition for a stochastic nonlinear system and we propose a control method for a stochastic nonlinear system using neural networks. Since a competitive learning neural networks has been developed based on the stochastic approximation method, it is regarded as a stochastic recursive filter algorithm. In addition, we provide a filtering and control condition for a stochastic nonlinear system, called perfect filtering condition, in a viewpoint of stochastic geometry. The stochastic nonlinear system satisfying the perfect filtering condition is decoupled with a deterministic part and purely semi martingale part. Hence, the above system can be controlled by conventional control laws and various intelligent control laws. Computer simulation shows that the stochastic nonlinear system satisfying the perfect filtering condition is controllable. and the proposed neural controller is more efficient than the conventional LQG controller and the canoni al LQ-Neural controller.

  • PDF

Boundary Control of an Axially Moving Belt System in a Thin-Metal Production Line

  • Hong, Keum-Shik;Kim, Chang-Won;Hong, Kyung-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.55-67
    • /
    • 2004
  • In this paper, an active vibration control of a translating steel strip in a zinc galvanizing line is investigated. The control objectives in the galvanizing line are to improve the uniformity of the zinc deposit on the strip surfaces and to reduce the zinc consumption. The translating steel strip is modeled as a moving belt equation by using Hamilton’s principle for systems with moving mass. The total mechanical energy of the strip is considered to be a Lyapunov function candidate. A nonlinear boundary control law that assures the exponential stability of the closed loop system is derived. The existence of a closed-loop solution is shown by proving that the closed-loop dynamics is dissipative. Simulation results are provided.

Cross-Coupled Control for the Friction Compensation of CNC Machines (CNC 공작 기계의 마찰력 보상을 위한 상호 결합 제어)

  • Joo, Jeong-Hong;Lee, Hyun-Chul;Lee, Yun-Jung;Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.462-470
    • /
    • 1999
  • In this paper, we proposed a cross-couple controller for compensating nonlinear friction of the X-Y table of CNC machines. Due to the nonlinearity of the frictions, large contour errors, referred to as quadrant glitches, occur when each axis of the X-Y table makes a zero velocity crossing. To reduce the quadrant glitches the friction compensators and nonlinear friction observers for estimating Coulomb frictions are employed in the proposed method. A hyperbolic tangent function is used in reducing the magnitude of quadrant glitches and the CEM (Contour Error Model) is utilized for the estimation of the velocities. The performance of the proposed compensators is evaluated for several trajectories by computer simulations.

  • PDF

Stability of Explicit Symplectic Partitioned Runge-Kutta Methods

  • Koto, Toshiyuki;Song, Eunjee
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • A numerical method for solving Hamiltonian equations is said to be symplectic if it preserves the symplectic structure associated with the equations. Various symplectic methods are widely used in many fields of science and technology. A symplectic method preserves an approximate Hamiltonian perturbed from the original Hamiltonian. It theoretically supports the effectiveness of symplectic methods for long-term integration. Although it is also related to long-term integration, numerical stability of symplectic methods have received little attention. In this paper, we consider explicit symplectic methods defined for Hamiltonian equations with Hamiltonians of the special form, and study their numerical stability using the harmonic oscillator as a test equation. We propose a new stability criterion and clarify the stability of some existing methods that are visually based on the criterion. We also derive a new method that is better than the existing methods with respect to a Courant-Friedrichs-Lewy condition for hyperbolic equations; this new method is tested through a numerical experiment with a nonlinear wave equation.

Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system

  • Hora, M.S.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.267-289
    • /
    • 2014
  • A proper physical modeling of infilled building frame-foundation beam-soil mass interaction system is needed to predict more realistic and accurate structural behavior under static vertical loading. This is achieved via finite element method considering the superstructure, foundation and soil mass as a single integral compatible structural unit. The physical modelling is achieved via use of finite element method, which requires the use of variety of isoparametric elements with different degrees of freedom. The unbounded domain of the soil mass has been discretized with coupled finite-infinite elements to achieve computational economy. The nonlinearity of soil mass plays an important role in the redistribution of forces in the superstructure. The nonlinear behaviour of the soil mass is modeled using hyperbolic model. The incremental-iterative nonlinear solution algorithm has been adopted for carrying out the nonlinear elastic interaction analysis of a two-bay two-storey infilled building frame. The frame and the infill have been considered to behave in linear elastic manner, whereas the subsoil in nonlinear elastic manner. In this paper, the computational methodology adopted for nonlinear soil-structure interaction analysis of infilled frame-foundation-soil system has been presented.

A TREATMENT OF CONTACT DISCONTINUITY FOR CENTRAL UPWIND SCHEME BY CHANGING FLUX FUNCTIONS

  • Shin, Moungin;Shin, Suyeon;Hwang, Woonjae
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.29-45
    • /
    • 2013
  • Central schemes offer a simple and versatile approach for computing approximate solutions of nonlinear systems of hyperbolic conservation laws. However, there are large numerical dissipation in case of contact discontinuity. We study semi-discrete central upwind scheme by changing flux functions to reduce the numerical dissipation and we perform numerical computations for various problems in case of contact discontinuity.