• Title/Summary/Keyword: nonlinear global analysis

Search Result 274, Processing Time 0.028 seconds

Effect of Internal Pressure on the Behavior of Wall Thinned Elbow under In-Plane Bending (In-plane 굽힘 조건에서 감육엘보우 거동에 미치는 내압의 영향)

  • Kim, Jin-Weon;Kim, Tae-Soon;Park, Chi-Yong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.268-273
    • /
    • 2004
  • This study is conducted to clarify the effect of internal pressure on the deformation and collapse behaviors of wall thinned elbow under in-plane bending moment. Thus the nonlinear three-dmensional finite element analyses were performed to obtain the moment-rotation curve of elbow contatining various wall thinning defects located at intrados and extrados under in-plane bending (closing and opening modes) with internal pressure of $0{\sim}15MPa.$ From the results of analysis, the effect of internal of collapse moment of elbow on the global deformation behavior of wall thinned elbow was discussed, and the dependence of collapse moment of elbow on the magnitude of internal pressure was investigated under different loading mode, defect location, and defect shape.

  • PDF

Research on scheduling and optimization under uncertain conditions in panel block production line in shipbuilding

  • Wang, Chong;Mao, Puxiu;Mao, Yunsheng;Shin, Jong Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.398-408
    • /
    • 2016
  • Based on non-completely hybrid flow line scheduling of panel block in shipbuilding, several uncertain factors influencing the problem were analyzed in a real environment, and a nonlinear integer programming model was built for each sub-scheduling problem. To narrow the difference between theory and application, rolling horizon and rescheduling methods are proposed. Moreover, with respect to the uncertainty of processing time, arriving time and due time, we take the minimizing of the early and delayed delivery costs as the objective, and establish an evaluation with a global penalty function. Finally, numerical experiments and a simulation analysis were undertaken to demonstrate the effectiveness of the model and algorithm.

Performance of R/C Bridge Piers under Seismic Loads

  • Kang, Hong-Duk;Kang, Young-Jong;Yoon, Young-Soo
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 2000
  • A research program was initiated at the University of Colorado at Boulder to develop computational models that can be used for seismic risk assessments. To assess the overall performance of bridge structures including the nonlinear effects of bridge piers, the research focused on two levels of capabilities, i.e. global and local pier levels. A 3-D concrete model was used to evaluate the behavior of individual piers under combined axial, bending, and shear loadings using 3-D finite element analysis. Whereby the response curve reached the peak strength of the R/C column under the constant axial and monotonically increasing lateral loads. Experimental results on reinforced concrete bridge piers, which were obtained at the University of California at San Diego were used to validate the seismic performance of bridge piers at the two levels, globa1 and local.

  • PDF

Effect of Local Wall Thinning Defect on the Collapse Moment of Elbow (엘보우의 붕괴모멘트에 미치는 국부 감육결함의 영향)

  • Kim, Jin-Weon;Kim, Tae-Soon;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.402-409
    • /
    • 2004
  • The purpose of this study is to investigate the effect of local wall thinning on the collapse of elbow subjected to internal pressure and bending moment. Thus, the nonlinear three-dimensional finite element analyses were performed to obtain the collapse moment of elbow containing various wall thinning defects located at intrados and extrados under two loading modes (closing and opening modes) with internal pressure. From the results of analysis, the effect of wall thinning defect on the global moment-rotation behavior of elbow was discussed, and the dependence of collapse moment of elbow on wall thinning depth, length, and circumferential angle was investigated under different loading mode and defect location.

A Study on the Controller Design of Unmanned Surface Vessel through Repetitive Learning Method (반복 학습을 통한 무인 선박의 제어기 설계에 관한 연구)

  • Kim, Mincheul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.850-856
    • /
    • 2018
  • In this paper, a controller based on repetitive learning control is designed to control an unmanned surface vessel with nonlinear characteristics and unknown parameters. First, we define the equations of motion and error system of the unmanned vessel, and then design an repetitive learning controller composed of system error and estimated unknown parameters based on repetitive learning control and adaptive control. The stability of the unmanned vessel model controlled by the designed controller is verified through the analysis of the Lyapunov stability. Simulation shows that the error converges asymptotically to zero with semi-global result, confirming that the unmanned vessel is moving toward a given ideal path, and verifies that the controller is also feasible.

UTILIZING FIXED POINT METHODS IN MATHEMATICAL MODELLING

  • Dasunaidu Kuna;Kumara Swamy Kalla;Sumati Kumari Panda
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.473-495
    • /
    • 2023
  • The use of mathematical modelling in the study of epidemiological disorders continues to grow substantially. In order to better support global policy initiatives and explain the possible consequence of an outbreak, mathematical models were constructed to forecast how epidemic illnesses spread. In this paper, fractional derivatives and (${\varpi}$ - F𝓒)-contractions are used to explore the existence and uniqueness solutions of the novel coronavirus-19 model.

Launching Simulation of Integrated Mining System for Deep-Seabed Mineral Resources (심해저 광물자원 채광시스템의 설치 거동 해석)

  • Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.315-318
    • /
    • 2006
  • This paper concerns about coupled dynamic analysis of the deep-seabed mining system in launching operation. The dynamic behavior of mining system consisting of lifting pipe, buffer station, flexible conduit and self-propelled miner is simulated in time domain. The launching operation is divided into four critical phases: (1) deployment of miner and flexible conduit, (2) deployment of lifting pipe, flexible conduit and miner, (3) touch-down of miner, (4) final launching. The dynamic responses of sub-systems - miner, flexible conduit, buffer and lifting pipe - are analyzed in each launching phase. According to the changing periods of forced excitation at the top, the dynamic responses of sub-systems are diverse in their characteristics. It has been shown that the total integrated responses of sub-systems are strongly affected by the design parameters. Especially, the principal dimensions of flexible conduit seem to be significant in determining of the global response. Based on the simulation results, safe operation conditions are investigated.

  • PDF

The effects of special metallic dampers on the seismic behavior of a vulnerable RC frame

  • Ozkaynak, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.483-496
    • /
    • 2017
  • Earthquake excitations may induce important amount of seismic energy into structures. Current design philosophy mainly deals with the plastic deformations of replaceable energy dissipating devices rather than damages accumulated on structural members. Since earthquake damage is substantially concentrated on these devices they could be replaced after severe earthquakes. In this study, the efficiency of steel cushion (SC) on seismic improvement of a vulnerable reinforced concrete (RC) frame is determined by means of several numerical simulations. The cyclic shear behaviors of SCs were determined by performing quasi-static tests. The test results were the main basis of the theoretical model of SCs which were used in the numerical analysis. These analyses were performed on three types of RC frames namely bare frame (BF), full-braced frame (F-BF) and semi-braced frame (S-BF). According to analysis results; implementation of SCs has considerable effects in reducing the storey shear forces and storey drifts. Moreover plastic energy demands of structural elements were reduced which indicates a significant improvement in seismic behavior of the RC frame preventing damage accumulation on structural elements. Full-braced frame having SCs with the thickness of 25 mm has better performance than semi-braced frame interms of energy dissipation. However, global energy dissipation demand of S-BF and F-BF having SCs with the thickness of 18 mm are almost similar.

Effect of Wrinkling on Failure Behavior of Thin Membranes (얇은 막재에서 주름이 파괴거동에 미치는 영향)

  • Kim, Young-Ah;Woo, Kyeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1005-1012
    • /
    • 2011
  • In this paper, the effect of wrinkling on the failure behavior of thin membrane was studied using geometrically nonlinear shell element post-buckling analysis with global-local analysis strategy. In the analysis, double-edge notched and single-edge notched tensile specimen configurations were considered. The analyses were performed for both cases with allowing and suppressing the wrinkling deformation. The results were investigated focusing on the effect of wrinkle development on the variation of J-integral values at the cut tip. The effect of cut lengths and the specimen lengths were also systematically studied.

Dynamic characteristics and fatigue damage prediction of FRP strengthened marine riser

  • Islam, A.B.M. Saiful
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.21-32
    • /
    • 2018
  • Due to the escalation in hydrocarbon consumption, the offshore industry is now looking for advanced technology to be employed for deep sea exploration. Riser system is an integral part of floating structure used for such oil and gas extraction from deep water offering a system of drill twines and production tubing to spread the exploration well towards the ocean bed. Thus, the marine risers need to be precisely employed. The incorporation of the strengthening material, fiber reinforced polymer (FRP) for deep and ultra-deep water riser has drawn extensive curiosity in offshore engineering as it might offer potential weight savings and improved durability. The design for FRP strengthening involves the local design for critical loads along with the global analysis under all possible nonlinearities and imposed loadings such as platform motion, gravity, buoyancy, wave force, hydrostatic pressure, current etc. for computing and evaluating critical situations. Finite element package, ABAQUS/AQUA is the competent tool to analyze the static and dynamic responses under the offshore hydrodynamic loads. The necessities in design and operating conditions are studied. The study includes describing the methodology, procedure of analysis and the local design of composite riser. The responses and fatigue damage characteristics of the risers are explored for the effects of FRP strengthening. A detail assessment on the technical expansion of strengthening riser has been outlined comprising the inquiry on its behavior. The enquiry exemplifies the strengthening of riser as very potential idea and suitable in marine structures to explore oil and gas in deep sea.