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Abstract. The use of mathematical modelling in the study of epidemiological disorders

continues to grow substantially. In order to better support global policy initiatives and

explain the possible consequence of an outbreak, mathematical models were constructed

to forecast how epidemic illnesses spread. In this paper, fractional derivatives and ($ −
FC)-contractions are used to explore the existence and uniqueness solutions of the novel

coronavirus-19 model.

1. Introduction

A strange virus known as Cov-19 has been waging a relentless attack on
the globe for more than 24 months. Wuhan was the origin of the epidemic,
which has since propagated to every nation on earth. A deadly contagious
sickness has claimed the lives of millions of people all across the world. For
elderly people and people with health concerns, the disorder has an extremely
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high mortality rate. Despite the fact that it is widely acknowledged that the
transmission is much more vigorous at relatively low temperature, the data to
support this claim has not yet been discovered. The etymology of this virus
is not investigated, despite the fact that numerous scientists from various
backgrounds have started some basic investigations on the dissemination, the
surface life duration, and the tactics that may be employed to limit the spread.
Many people insist that the virus originated in bats, pangolins, shellfish, etc.,
while others think it was created by humans.

Over the past few months, there have been few eradicative vaccinations for
this virus available worldwide. Due to steps taken by humanity to stop the
spread of the coronavirus, many cities throughout the world are now deserted.
By waking up some invisible adversaries who may theoretically harm and
paralyze everything that humans have created in previous decades, breaching
the laws of nature is indirectly a strong indication that humanity should abide
by them. Scientists can now comprehend that nature is dynamic and that
human awareness is insufficient to endanger the natural world. It has extensive
expertise in the creation of vaccines. Therefore, care must be made when
interacting with the many beings that inhabit our environment.

The principles, life span, manner of propagation, impact of age, temperature
affluence, and many other aspects of the human body have all been the subject
of numerous studies. But utilizing the idea of differentiation and the observ-
able facts, mathematicians build a mathematical model to better explain the
distribution. These facts enable them to create a model in which the solution
could describe the upcoming time-dependent activities in the practical case.
With a collection of facts and constraints, mathematicians use this method to
understand, control, and forecast how potential challenges will behave.

On the other hand, Wardowsky [21] defined and explored the idea of F -
contraction. It has drawn numerous authors to publish numerous intriguing
findings in this field. Topological concepts like Cauchy, completion, converges,
and a contraction-type mapping of the form were sort of involved.

d(H a,H b) > 0⇒ τ + F (d(H a,H b)) ≤ F (d(a, b))

for all a, b ∈ X, where τ > 0, H : X → X and F : (0,∞) → R fulfills the
subsequent conditions:

(F1): F is strictly increasing;
(F2): lim

n→∞
tn = 0 iff lim

n→∞
F (tn) = −∞;

(F3): There exists k ∈ (0, 1) such that lim
t→0+

tkF (t) = 0.

Definition 1.1. ( [19]) A mapping H : X → X is α-admissible if there exists
a function α : X×X → R+ such that a, b ∈ X, α(a, b) ≥ 1⇒ α(H a,H b) ≥ 1.
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If we reckon the concepts of F -contraction and α-admissibility in the concept
of fixed points, there is a wide growth in this concern. The ideas used in [21],
[19] and/or generalizations of metric spaces have attracted several authors.
For more clearly,

• for generalizations of metric space, the reader can refer [2], [3], [8], [10];
• for utilization of F -contractions and generalizations of F -contractions,

the reader can refer [1], [6], [7], [9], [14], [15], [16], [18], [22], [24];
• applications of fixed point theorems, the reader can refer [12], [13],

[17], [20], [23].

On the mirror side of this section, S. Czerwik [5] introduced the idea of a
b-metric space in 1993.

Definition 1.2. ( [5]) Assume that X is a nonempty set and s ≥ 1. A function
d : X ×X −→ [0,∞) is called a b-metric space provided that the subsequent
properties are fulfilled:

(i) d(a, b) = 0 iff a = b;
(ii) d(a, b) = d(b, a), ∀ a, b ∈ X;

(iii) d(a, b) ≤ s[d(a, c) + d(c, b)], ∀ a, b, c ∈ X.

Definition 1.3. ( [10]) Assume that X is a non-empty set and p : X ×X →
[1,∞). A function C : X ×X → [0,∞) is said to be a controlled metric type
if for all a, b, c ∈ X, it the subsequent properties are fulfilled:

(i) C(a, b) = 0 iff a = b;
(ii) C(a, b) = C(b, a);

(iii) C(a, b) ≤ p(a, c)C(a, c) + p(c, b)C(c, b).
The pair (X, Cb) is said to be a controlled metric type space.

Now, we present the idea of controlled b-metric space by summing up the
above concepts, that is, a b-metric space and a controlled metric type space
in the following direction:

Definition 1.4. Assume that X is a nonempty set and s ≥ 1. Given p :
X ×X → [1,∞). A function Cb : X ×X → [0,∞) is said to be a controlled
b-metric (simply, a Cb-metric) provided that for all a, b, c ∈ X,

(i) Cb(a, b) = 0 iff a = b;
(ii) Cb(a, b) = Cb(b, a);

(iii) Cb(a, b) ≤ s[p(a, c)Cb(a, c) + p(c, b)Cb(c, b)].

Example 1.5. Let X = {0, 1, 2}. Define p : X×X → [1,∞) and Cb : X×X →
[0,∞) as p(a, b) = 1 + ab and

Cb(2, 2) = Cb(0, 0) = Cb(1, 1) = 0;
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Cb(2, 0) = Cb(0, 2) = 5; Cb(0, 1) = Cb(1, 0) = 10;

Cb(2, 1) = Cb(1, 2) = 30 and s = 2.

Note that (i) and (ii) trivially hold. For (iii), we obtain

Cb(2, 0) = 5; 2[p(2, 1)Cb(2, 1) + p(1, 0)Cb(1, 0)] = 200;

Cb(1, 2) = 30; 2[p(1, 0)Cb(1, 0) + p(0, 2)Cb(0, 2)] = 30;

Cb(0, 1) = 10; 2[p(0, 2)Cb(0, 2) + p(2, 1)Cb(2, 1)] = 190.

Hence, for all a, b, c ∈ X, Cb(a, b) ≤ s[p(a, c)Cb(a, c)+p(c, b)Cb(c, b)]. So (X, Cb)
is a controlled b-metric space.

Remark 1.6. A controlled b-metric space is not a controlled metric type space
since from above example

Cb(1, 2) � 2[p(1, 0)Cb(1, 0) + p(0, 2)Cb(0, 2)].

Definition 1.7. Let (X, Cb) be a Cb-metric space and {an} be a sequence of
points of X. Then

(1) {an} converges to a ∈ X if for all ε > 0, there exist N = N(ε) ∈ N
such that Cb(an, a) < ε for all n ≥ N . In this situation, we define
lim
n→∞

an = a;

(2) {an} is a Cauchy sequence if lim
m,n→∞

Cb(am, an) = 0;

(3) (X, Cb) is complete if every Cauchy sequence {an} is convergent in X.

2. Banach contraction principle

Now we state and prove the first result.

Theorem 2.1. Assume that (X, Cb) is a complete controlled b-metric space.
Let H : X → X satisfy

Cb(H a,H b) ≤ kCb(a, b), (2.1)

for all a, b ∈ X and k ∈ (0, 1). For a0 ∈ X, take an = H na0 = H an−1.
Suppose that

sup
m≥1

lim
i→∞

s
p(ai+1, ai+2)

p(ai, ai+1)
p(ai+1, am) <

1

k
. (2.2)

In addition, let us consider that for every a ∈ X, we obtain

lim
n→∞

p(an, a) and lim
n→∞

p(a, an) exist and are finite. (2.3)

Then H has a unique fixed point.
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Proof. Initially, we have to verify the uniqueness. On contrary, let H has two
fixed points, say u and v. Then

Cb(u, v) = Cb(H u,H v) ≤ kCb(u, v),

so

(1− k)Cb(u, v) ≤ 0,

this implies that, 1 − k = 0 which gives a contradiction. Therefore, H has
a unique fixed point. Assume that a0 ∈ X be arbitrary. Define the iterative
sequence {an} by an = H na0. By using (2.1), we get

Cb(an, an+1) ≤ knCb(a0, a1), ∀ n ≥ 0.

For all n,m ∈ N(n < m), we have

Cb(an, am)

≤ s[p(an, an+1)Cb(an, an+1) + p(an+1, am)Cb(an+1, am)]

≤ sp(an, an+1)Cb(an, an+1)

+ s2p(an+1, am)p(an+1, an+2)Cb(an+1, an+2)

+ s2p(an+1, am)p(an+2, am)Cb(an+2, am)

≤ sp(an, an+1)Cb(an, xn+1)

+ s2p(an+1, am)p(an+1, an+2)Cb(an+1, an+2)

+ s3p(an+1, am)p(an+2, am)p(an+2, an+3)Cb(an+2, an+3)

+ s3p(an+1, am)p(an+2, am)p(an+3, am)Cb(an+3, am)

≤ sp(an, an+1)Cb(an, an+1)

+ s2p(an+1, am)p(an+1, an+2)Cb(an+1, an+2)

+ s3p(an+1, am)p(an+2, am)p(an+2, an+3)Cb(an+2, an+3)

+ s4p(an+1, am)p(an+2, am)p(an+3, am)p(an+3, an+4)Cb(an+3, an+4)

+ s4p(an+1, am)p(an+2, am)p(an+3, am)p(an+4, am)Cb(an+4, am)

...

≤ sp(an, an+1)Cb(an, an+1)

+ s2p(an+1, am)p(an+1, an+2)Cb(an+1, an+2)

+ s3p(an+1, am)p(an+2, am)p(an+2, an+3)Cb(an+2, an+3)

+ s4p(an+1, am)p(an+2, am)p(an+3, am)p(an+3, an+4)Cb(an+3, an+4)

+ s4p(an+1, am)p(an+2, am)p(an+3, am)

...
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+ sip(an+1, am)p(an+2, am)p(an+3, am)....p(an+i, am)Cb(an+i, am).

Therefore, we have

Cb(an, am) ≤ sp(an, an+1)Cb(an, an+1)

+
n+1∏
j=n+1

sp(aj , am)sp(an+1, an+2)Cb(an+1, an+2)

+

n+2∏
j=n+1

(sp(aj , am))sp(an+2, an+3)Cb(an+2, an+3)

+
n+3∏
j=n+1

(sp(aj , am))sp(an+3, an+4)Cb(an+3, an+4)

+

n+4∏
j=n+1

(sp(aj , am))sp(an+4, an+5)Cb(an+4, an+5)

...

+
m−2∏
j=n+1

(sp(aj , am))sp(am−2, am−1)Cb(am−2, am−1)

+
m−1∏
i=n+1

(sp(ai, am))Cb(am−1, am))

≤ sp(an, an+1)Cb(an, an+1)

+
m−2∑
i=n+1

( i∏
j=n+1

(sp(aj , am))

)
sp(ai, ai+1)Cb(ai, ai+1)

+

m−1∏
i=n+1

(sp(ai, am))Cb(am−1, am))

≤ sp(an, an+1)k
nCb(a0, a1)

+
m−2∑
i=n+1

( i∏
j=n+1

(sp(aj , am))

)
sp(ai, ai+1)k

iCb(a0, a1)

+

m−1∏
i=n+1

(sp(ai, am))km−1Cb(a0, a1))

≤ sp(an, an+1)k
nCb(a0, a1)
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+
m−2∑
i=n+1

( i∏
j=n+1

(sp(aj , am))

)
sp(ai, ai+1)k

iCb(a0, a1)

+

( m−1∏
i=n+1

(sp(ai, am))

)
skm−1p(am−1, am)Cb(a0, a1))

≤ sp(an, an+1)k
nCb(a0, a1)

+
m−1∑
i=n+1

( i∏
j=n+1

(sp(aj , am))

)
sp(ai, ai+1)k

iCb(a0, a1)

≤ sp(an, an+1)k
nCb(a0, a1)

+

m−1∑
i=n+1

( i∏
j=0

(sp(aj , am))

)
sp(ai, ai+1)k

iCb(a0, a1). (2.4)

Let us consider the sum

Sl =

l∑
i=0

( i∏
j=0

(sp(aj , am))

)
sp(ai, ai+1)k

i.

From (2.4), we get

Cb(an, am) ≤ Cb(a0, a1)[knsp(an, an+1) + (Sm−1 − Sn)]. (2.5)

Since p(a, b) ≥ 1, s ≥ 1, and by applying ratio test, limn→∞ Sn exists and
therefore the real sequence {Sn} is Cauchy.

In the end, if we consider the limit in (2.5) when n,m→∞, we infer that

lim
n,m→∞

Cb(an, am) = 0. (2.6)

Thus, {an} is a Cauchy sequence in the complete controlled b-metric space
(X, Cb). So there exists ρ ∈ X such that

lim
n→∞

Cb(an, ρ) = 0, that is, an → ρ as n→∞. (2.7)

Now, we have to verify ρ is a fixed point of H .
From condition (iii) in Definition 1.4,

Cb(ρ, an+1) ≤ s[p(ρ, an)Cb(ρ, an) + p(an, an+1)Cb(an, an+1)].

By using (2.2), (2.3), (2.6) and (2.7), we can deduce that

lim
n→∞

Cb(ρ, an+1) = 0. (2.8)

Again, by using the condition (iii) in Definition 1.4 and (2.1)

Cb(ρ,H ρ) ≤ s[p(ρ, an+1)Cb(ρ, an+1) + p(an+1,H ρ)Cb(an+1,H ρ)]

≤ s[p(ρ, an+1)Cb(ρ, an+1) + p(an+1,H ρ)kCb(an, ρ)].
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Allowing n → ∞ and applying (2.3), (2.7) and (2.8), we can easily deduce
that Cb(ρ,H ρ) = 0. This yields that ρ = H ρ. We conclude that the proof is
completed. �

We illustrate the above theorem by the subsequent example.

Example 2.2. Assume X = {0, 1, 2}. Determine p : X × X → [1,∞) and
Cb : X ×X → [1,∞) when p(a, b) = 1 + ab and

Cb(2, 2) = Cb(0, 0) = Cb(1, 1) = 0;

Cb(2, 0) = Cb(0, 2) = 5; Cb(0, 1) = Cb(1, 0) = 10;

Cb(2, 1) = Cb(1, 2) = 30 and s = 2.

Now, define H : X → X by

H a =

{
0, if a ∈ {0, 2},
2, if a = 1

and choose k = 0.9.

Case I: If a = 0, b = 1, we have

Cb(H a,H b) = Cb(H 0,H 1) = Cb(0, 2) = 5.

Thus,

Cb(H a,H b) ≤ kCb(a, b).

Case II: If a = 0, b = 2, we have

Cb(H a,H b) = Cb(H 0,H 2) = Cb(0, 0) = 0.

So

Cb(H a,H b) ≤ kCb(a, b).

Case III: If a = 1, b = 2, we get

Cb(H a,H b) = Cb(H 1,H 2) = Cb(2, 0) = 5

that is,

Cb(H a,H b) ≤ kCb(a, b).

Case IV: If a = b = 0 or a = b = 1 or a = b = 2, we get

Cb(H a,H b) = 0.

Consequently,

Cb(H a,H b) ≤ kCb(a, b)
for all, a, b ∈ X. Therefore, all the requirements of above theorem are fulfilled
and H has a unique fixed point, which is, a = 0.
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We may discuss many facts as particular cases of Banach contraction by
arranging the below different consecutive values in Definition 1.4.

Special Cases:

(1) Suppose we assume s = 1 in Theorem 2.1, then we can get Theorem 1
of Mlaiki et al. [10].

(2) If we take p(a, c) = p(c, b) and s = 1 in Theorem 2.1, then we get
Theorem 2 of Kamran et al. [8] (since we omit the strong hypothesis
concerning the continuity of the extended metric imposed in [8] and it
is replaced by a weak hypothesis, as condition (3)).

(3) If we take p(a, c) = p(c, b) = 1 Theorem 2.1, then we can get Theorem
1 of Czerwik [5].

(4) If we take p(a, c) = p(c, b) = s = 1 Theorem 2.1, then it reducing to
standard complete metric space.

3. On ($ − Fα)-contractions

We now present the being next definition for proving the main results:

Definition 3.1. Assume that (X, Cb) is a Cb-metric space. A mapping H :
X → X is called a ($ − FC)-contraction on X provided that there exists
α : X ×X → R+ and $ : (0,∞)→ (0,∞) such that

(H1) FC satisfies (F1), (F2) and (F3);
(H2) lim infs→t+ $(s) > 0 for all t ≥ 0;
(H3) $(P(a, b)) + α(a, b)FC(Cb(H a,H b)) ≤ FC(P(a, b)), where

P(a, b) = max

{
Cb(a, b), Cb(a,H a), Cb(b,H b),

Cb(a,H a).Cb(b,H b)

1 + Cb(a, b)

}
,

for all a, b ∈ X with Cb(H a,H b) > 0.

Theorem 3.2. Assume that (X, Cb) is a complete Cb-metric space and H :
X → X is a ($ − FC)-contraction fulfilling the subsequent properties:

(I) H is α-admissible;
(II) ∃ a0 ∈ X 3 α(a0,H a0) ≥ 1;

(III) H is continuous;

(IV) sup
p≥0

lim
i→∞

{
Cb(ai+1,ai+2)Cb(ai+1,an+p)

Cb(ai,ai+1)

}
< 1.

Then H has a fixed point.

Proof. Assume that for a0 ∈ X, such that α(a0,H a0) ≥ 1. We determine
{an} in X by an+1 = H an for all n ∈ N. Clearly, if there exists n0 ∈ N for
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which an0+1 = an0 , then H an0 = an0 and the proof is finished. Hence, we
assume an+1 6= an for n ∈ N. By applying (I) and (II), clearly

α(H an,H an+1) ≥ 1 ∀ n ∈ N.

It gives that

FC(Cb(an+1, an)) = FC(Cb(H an,H an−1))

≤ α(an, an−1)FC(Cb(H an,H an−1)).

Since H is a ($ − Fα)-contraction, for every n ∈ N, we can write

$(Cb(an, an−1)) + FC(Cb(an+1, an))

≤ $(Cb(an, an−1)) + α(an, an−1)FC(Cb(H an,H an−1))

≤ FC(P(an, an−1))

≤ FC

(
max

{
Cb(an, an−1), Cb(an,H an), Cb(an−1,H an−1),

Cb(an,H an).Cb(an−1,H an−1)

1 + Cb(an, an−1)

})

= FC

(
max

{
Cb(an, an−1), Cb(an, an+1), Cb(an−1, an),

Cb(an, an+1).Cb(an−1, an)

1 + Cb(an, an−1)

})
= FC(max{Cb(an, an−1), Cb(an, an+1)}).

(3.1)

If there exists n ∈ N such that max{Cb(an, an−1), Cb(an, an+1)} = Cb(an, an+1),
then (3.1) becomes

$(Cb(an, an−1)) + FC(Cb(an+1, an)) ≤ FC(Cb(an, an+1)), (3.2)

which is a contradiction to (H2). Therefore max{Cb(an, an−1), Cb(an, an+1)} =
Cb(an, an−1) for all n ∈ N. Thus from (3.1), we get

$(Cb(an, an−1)) + FC(Cb(an+1, an)) ≤ FC(Cb(an, an−1)) for all n ∈ N.

Thus,

FC(Cb(an+1, an)) ≤ FC(Cb(an, an−1))−$(Cb(an, an−1)), ∀n ∈ N.

By referring (3.2) and (F1), we obtain Cb(an, an+1) is decreasing and therefore
Cb(an, an+1) ↘ t, t ≥ 0. In view of (H2), there exist e > 0 and n0 ∈ N such
that $(Cb(an, an+1)) > e for each n ≥ n0.
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Consider,

FC(Cb(an, an+1))

≤ FC(Cb(an−1, an))−$(Cb(an−1, an))

≤ FC(Cb(an−2, an−1))−$(Cb(an−2, an−1))−$(Cb(an−1, an))

≤ FC(Cb(an−3, an−2))−$(Cb(an−3, an−2))−$(Cb(an−2, an−1))
−$(Cb(an−1, an))

...

≤ FC(Cb(a0, a1))−$(Cb(a0, a1))−$(Cb(a1, a2))− · · ·
−$(Cb(an−1, an))

= FC(Cb(a0, a1))−
n∑
i=1

$(Cb(ai−1, ai)).

(3.3)

From (3.3), we get

FC(Cb(an, an+1)) ≤ FC(Cb(a0, a1))− ne. (3.4)

Letting n→∞ in (3.4), we get

FC(Cb(an, an+1))→ −∞.

By (F2),

Cb(an, an+1)→ 0 as n→∞. (3.5)

To show that {an} is a Cauchy sequence, from (F3), there exists k ∈ (0, 1)
such that,

lim
n→∞

(Cb(an, an+1))
kFC(Cb(an, an+1)) = 0. (3.6)

By (3.4), the being next holds for all n ∈ N,

(Cb(an, an+1))
kFC(Cb(an, an+1))− (Cb(an, an+1))

kFC(Cb(a0, a1))

≤ (Cb(an, an+1))
k(FC(Cb(a0, a1))− ne)− (Cb(an, an+1))

kFC(Cb(a0, a1))

= −(Cb(an, an+1))
kne

≤ 0.

(3.7)

Letting n→∞ in (3.7) and using (3.5) and (3.6), we obtain

lim
n→∞

n(Cb(an, an+1))
k = 0. (3.8)

By referring (3.8), there exists n1 ∈ N such that n(Cb(an, an+1))
k ≤ 1 for all

n ≥ n1. Consequently, we have

Cb(an, an+1) ≤
1

n
1
k

, for all n ≥ n1.
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We will verify {an}n∈N is a Cauchy sequence. Consider the triangle inequality
for q ≥ 1,

Cb(an, an+q)
≤ s[p(an, an+1)Cb(an, an+1) + p(an+1, an+q)Cb(an+1, an+q)]

≤ sp(an, an+1)Cb(an, an+1) + sp(an+1, an+q)Cb(an+1, an+q)

≤ sp(an, an+1)Cb(an, an+1) + sp(an+1, an+q)[s{p(an+1, an+2)Cb(an+1, an+2)

+ p(an+2, an+q)Cb(an+2, an+q)}]
≤ sp(an, an+1)Cb(an, an+1) + s2p(an+1, an+q)p(an+1, an+2)Cb(an+1, an+2)

+ s2p(an+1, an+q)p(an+2, an+q)Cb(an+2, an+p)

≤ sp(an, an+1)Cb(an, an+1) + s2p(an+1, an+q)p(an+1, an+2)Cb(an+1, an+2)

+ s3p(an+1, an+q)p(an+2, an+q)p(an+3, an+q)Cb(an+3, an+p) + ...

≤ sp(an, an+1)Cb(an, an+1) + s2p(an+1, am)p(an+1, an+2)Cb(an+1, an+2)

+ s3p(an+1, am)p(an+2, am)p(an+2, an+3)Cb(an+2, an+3)

+ s4p(an+1, am)p(an+2, am)p(an+3, am)p(an+3, an+4)Cb(an+3, an+4)

+ s4p(an+1, am)p(an+2, am)p(an+3, am)p(an+4, am)Cb(an+4, am)

...

≤ sp(an, an+1)Cb(an, an+1) + s2p(an+1, am)p(an+1, an+2)Cb(an+1, an+2)

+ s3p(an+1, am)p(an+2, am)p(an+2, an+3)Cb(an+2, an+3)

+ s4p(an+1, am)p(an+2, am)p(an+3, am)p(an+3, an+4)Cb(an+3, an+4)

+ s4p(an+1, am)p(an+2, am)p(an+3, am)

...

+ sip(an+1, am)p(an+2, am)p(an+3, am)....p(an+i, am)Cb(an+i, am)

≤ sp(an, an+1)Cb(an, an+1)

+

( n+1∏
j=n+1

sp(aj , an+p)

)
(sp(an+1, an+2)Cb(an+1, an+2))

+

( n+2∏
j=n+1

sp(aj , an+q)

)
(sp(an+2, an+3)Cb(an+2, an+3))

+

( n+3∏
j=n+1

sp(aj , an+q)

)
(sp(an+3, an+4)Cb(an+3, an+4)) + ...
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+

( n+q−2∏
j=n+1

sp(aj , an+q)

)
(sp(an+q−2, an+q−1)Cb(an+q−2, an+q−1))

+

( n+q−1∏
i=n+1

sp(ai, an+q)

)
Cb(an+q−1, an+q))

≤ sp(an, an+1)Cb(an, an+1)

+

n+q−2∑
i=n+1

( i∏
j=n+1

sp(aj , an+q)

)
(sp(ai, ai+1)Cb(ai, ai+1))

+

n+q−1∏
i=n+1

sp(ai, an+q)Cb(an+q−1, an+q)).

Thus,

Cb(an, an+q)
≤ sp(an, an+1)Cb(an, an+1)

+

n+q−2∑
i=n+1

( i∏
j=n+1

sp(aj , an+q)

)
(sp(ai, ai+1)Cb(ai, ai+1))

+

( n+q−1∏
i=n+1

sp(ai, an+q)

)
Cb(an+q−1, an+q))

≤ sp(an, an+1)Cb(an, an+1)

+

n+q−2∑
i=n+1

( i∏
j=n+1

sp(aj , an+q)

)
(sp(ai, ai+1)Cb(ai, ai+1))

+

( n+q−1∏
i=n+1

sp(ai, an+q)

)
(sp(an+q−1, an+q)Cb(an+q−1, an+q))

≤ sp(an, an+1)Cb(an, an+1)

+

n+q−1∑
i=n+1

( i∏
j=n+1

sp(aj , an+q)

)
(sp(ai, ai+1)Cb(ai, ai+1))

≤ sp(an, an+1)Cb(an, an+1)

+

n+q−1∑
i=n+1

( i∏
j=0

sp(aj , an+q)

)
sp(ai, ai+1)Cb(ai, ai+1)

(3.9)
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≤ sp(an, an+1)Cb(an, an+1)

+

n+q−1∑
i=n+1

( i∏
j=0

sp(aj , an+q)

)
sp(ai, ai+1)

1

i
1
k

.

Now, consider

n+q−1∑
i=n+1

( i∏
j=0

sp(aj , an+q)

)
sp(ai, ai+1)

1

i
1
k

=

n+q−1∑
i=n+1

1

i
1
k

( i∏
j=0

sp(aj , an+q)

)
sp(ai, ai+1)

=
∞∑

i=n+1

1

i
1
k

( i∏
j=0

sp(aj , an+q)

)
sp(ai, ai+1)

=
∞∑

i=n+1

UiVi,

where

Ui =
1

i
1
k

and

Vi =

( i∏
j=0

sp(aj , an+q)

)
sp(ai, ai+1).

Because 1
k > 1,

∞∑
i=n+1

1

i
1
k

converges and additionally

Vi =

( i∏
j=0

sp(aj , an+q)

)
sp(ai, ai+1)

is increasing and is bounded above. Therefore, limi→∞{Vi} = sup(Vi), which

is non zero and exists. Therefore, the product
∏i
j=0 sp(aj , an+q)sp(ai, ai+1)

converges. Therefore,
∞∑

i=n+1
UiVi converges.

Assume that the partial sum

Sq =

q∑
i=0

( i∏
j=0

sp(aj , an+q)

)
sp(ai, ai+1)

1

i
1
k

.

Now, from (3.9),

Cb(an, an+q) ≤ sp(an, an+1)Cb(an, an+1) + (Sn+q−1 − Sn). (3.10)
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Letting n→∞ in (3.10) and using (3.5), we get

lim
n→∞

Cb(an, an+q) = 0.

Thus, {an} is a Cauchy sequence. Since X is a complete Cb-metric space, there
exists λ ∈ X such that,

lim
n→∞

Cb(an, λ) = 0.

In view of the assumptions that the mapping H and the controlled b-metric
are continuous, since an → λ, we have that H an →H λ and hence we have

lim
n→∞

Cb(H an,H λ) = 0 = lim
n→∞

Cb(an+1,H λ) = Cb(λ,H λ),

and hence H λ = λ. Thus λ is a fixed point of H . �

We may discuss many facts as particular cases on ($−FC)-contractions by
arranging the following various consecutive values in Definition 1.4.

Special Cases:

(1) If we take s = 1 in Theorem 3.2, then Theorem 3.2 reduces to a
controlled metric type space, as in [10].

(2) If we take p(a, c) = p(c, b) and s = 1 in Theorem 3.2, then Theorem
3.2 reduces to an extended b-metric space, as in [8].

(3) If we take p(a, c) = p(c, b) = 1 in Theorem 3.2, then Theorem 3.2
reduces to a b-metric space.

4. Applications to our results in the pursuit
of 2019-nCoV modelling

There is regularly a compromise between oversimplified or key models in the
mathematical displaying of ailment transmission, as in most different regions
of numerical demonstrating, which exclude a large portion of the points of
interest and are planned principally to show general subjective conduct, and
mind-boggling or strategic models, normally intended for specific conditions,
including transient quantitative expectations. All in all, definite models are
troublesome or difficult to logically unravel and their handiness is consequently
restricted for hypothetical purposes, in spite of the fact that their key worth
might be high. For example, extremely oversimplified pestilence models antic-
ipate that after some time, a plague will cease to exist, leaving a segment of
the populace unaffected by contamination, and this is likewise valid for models
that include insurance measures. This factual hypothesis isn’t, without any-
one else, extremely fruitful in surveying what well-being measures in a given
situation will be the best, yet it implies that an exhaustive model might be
valuable for general well-being experts to report the reason as correctly as
could reasonably be expected. Specialist based models, which partition the
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network into people or gatherings of individuals with comparable activities,
are the benchmark in thorough models.

One of the significant reasons for death overall keeps on being irresistible
illnesses. With the unexpected variants of coronaviruses, bringing up issues
about regular mental fighting as well as developing worries about natural an-
imosity, sickness demonstration has gotten applicable to assume a part in
network well being methodology making. Mathematics and additionally log-
ical models of irresistible maladies may help us to comprehend the idea of
ailments and the pace of transmission.

To build up and break down various mediation techniques to evade or fortify
defilement and to all the more likely appropriate available assets (for instance,
choosing the objective populace, time for intercession, and area), models regu-
larly empower us to re-authorize the spread of ailments in different viewpoints
and angles.

Note that the utilization of mathematical modeling in the evaluation of
epidemiological illnesses is developing drastically. In this interest, we present
the existence results for the new Coronavirus fractional order models.

4.1. Existence of the solution under the setting of complete met-
ric space: In this section, the mathematical model capable of depicting the
spread of the Coronavirus-19 was recently suggested by Baleanu et al. [4],
which model has considered several variables in the setting of Caputo-Fabrizio
fractional derivative as stated below:

C F DρSp =
∧
p

−apSp −
bpSp(Ip + ΘAp)

Np
− bwSpM ;

C F DρAp =
bpSp(Ip + ΘAp)

Np
+ bwSpM − (1−Υp)ωpAp −ΥpξpAp − apAp;

C F DρIp = (1−Υp)ωpAp − (τp + ap)Ip;

C F DρAp = ΥpξpAp − (τϑp + ap)Ap;

C F DρRp = τpIp + τϑpAp − apRp;
C F DρM = cpIp + epAp − πM .

(4.1)

By applying fractional integral operator, we convert model (4.1) into below
integral form:

Sp(t)−Sp(0) =C F I ρ

[∧
p

−apSp −
bpSp(Ip + ΘAp)

Np
− bwSpM

]
;
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Ap(t)−Ap(0) =C F I ρ

[
bpSp(Ip + ΘAp)

Np
+ bwSpM

− (1−Υp)ωpAp −ΥpξpAp − apAp

]
;

Ip(t)−Ip(0) =C F I ρ

[
(1−Υp)ωpAp − (τp + ap)Ip

]
;

Ap(t)−Ap(0) =C F I ρ

[
ΥpξpAp − (τϑp + ap)Ap

]
;

Rp(t)−Rp(0) =C F I ρ

[
τpIp + τϑpAp − apRp

]
;

Mp(t)−Mp(0) =C F I ρ

[
cpIp + epAp − πM

]
.

(4.2)

Let S = {A ∈ C(I,R) : A(θ) > 0 for all θ ∈ I = [0,H ],H > 0}. Define a
mapping D : S× S→ [0,∞) as D(u, v) = |u− v| for all u, v ∈ S. Then (S,D)
is a complete metric space. Define a mapping H : S→ S by

H Sp(θ) =
2− 2σ

2B(σ)− σB(σ)
A(θ,Sp(θ))

+
2σ

2B(σ)− σB(σ)

∫ θ

0
A(v,Sp(v))dv;

H Ap(θ) =
2− 2σ

2B(σ)− σB(σ)
B(θ,Ap(θ))

+
2σ

2B(σ)− σB(σ)

∫ θ

0
B(v,Ap(v))dv;

H Ip(θ) =
2− 2σ

2B(σ)− σB(σ)
C(θ,Ip(θ))

+
2σ

2B(σ)− σB(σ)

∫ θ

0
C(v,Ip(v))dv;

H Ap(θ) =
2− 2σ

2B(σ)− σB(σ)
D(θ,Ap(θ))

+
2σ

2B(σ)− σB(σ)

∫ θ

0
D(v,Ap(v))dv;

H Rp(θ) =
2− 2σ

2B(σ)− σB(σ)
E(θ,Rp(θ))

+
2σ

2B(σ)− σB(σ)

∫ θ

0
E(v,Rp(v))dv;

(4.3)
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H Mp(θ) =
2− 2σ

2B(σ)− σB(σ)
F(θ,Mp(θ))

+
2σ

2B(σ)− σB(σ)

∫ θ

0
F(v,Mp(v))dv.

Then, we see that H is continuous. For each u, v ∈ S and θ ∈ I, we have,

H Sp(θ) =
2− 2σ

2B(σ)− σB(σ)
A(θ,Sp(θ))+

2σ

2B(σ)− σB(σ)

∫ θ

0
A(v,Sp(v))dv.

We now discuss the existence and uniqueness of solutions of (4.3) provided
the following conditions satisfied:

(i) |A(θ,Sp1(θ))− A(θ,Sp2(θ))| ≤ |Sp1(θ)−Sp2(θ)|,

(ii) 2
2B(σ)−σB(σ) < ζ, where 0 < ζ < 1.

Now consider,

|H Sp1(θ)−H Sp2(θ)|

=

∣∣∣∣∣ 2− 2σ

2B(σ)− σB(σ)
A(θ,Sp1(θ)) +

2σ

2B(σ)− σB(σ)

∫ θ

0
A(v,Sp1(v))dv

− 2− 2σ

2B(σ)− σB(σ)
A(θ,Sp2(θ))− 2σ

2B(σ)− σB(σ)

∫ θ

0
A(v,Sp2(v))dv

∣∣∣∣∣
=

∣∣∣∣∣ 2− 2σ

2B(σ)− σB(σ)

(
A(θ,Sp1(θ))− A(θ,Sp2(θ))

)

+
2σ

2B(σ)− σB(σ)

∫ θ

0

(
A(v,Sp1(v))dv − A(v,Sp2(v))

)
dv

∣∣∣∣∣
≤

∣∣∣∣∣ 2− 2σ

2B(σ)− σB(σ)

∣∣∣∣∣
∣∣∣∣∣
(
A(θ,Sp1(θ))− A(θ,Sp2(θ))

)∣∣∣∣∣
+

∣∣∣∣∣ 2σ

2B(σ)− σB(σ)

∣∣∣∣∣
∣∣∣∣∣
∫ θ

0

(
A(v,Sp1(v))dv − A(v,Sp2(v))

)
dv

∣∣∣∣∣
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≤

∣∣∣∣∣ 2− 2σ

2B(σ)− σB(σ)

∣∣∣∣∣
∣∣∣∣∣
(
A(θ,Sp1(θ))− A(θ,Sp2(θ))

)∣∣∣∣∣
+

∣∣∣∣∣ 2σ

2B(σ)− σB(σ)

∣∣∣∣∣
∣∣∣∣∣
(
A(θ,Sp1(θ))− A(θ,Sp2(θ))

)∣∣∣∣∣
≤

∣∣∣∣∣ 2− 2σ

2B(σ)− σB(σ)
+

2σ

2B(σ)− σB(σ)

∣∣∣∣∣
∣∣∣∣∣
(
A(θ,Sp1(θ))− A(θ,Sp2(θ))

)∣∣∣∣∣
≤

∣∣∣∣∣ 2

2B(σ)− σB(σ)

∣∣∣∣∣
∣∣∣∣∣Sp1(θ)−Sp2(θ)

∣∣∣∣∣
≤ ζ|Sp1(θ)−Sp2(θ)| where 0 < ζ < 1.

Therefore,

|H Sp1(θ)−H Sp2(θ)| ≤ ζ|Sp1(θ)−Sp2(θ)|. (4.4)

Using the above method we discussed above, one can get

|H Ap1(θ)−H Ap2(θ)| ≤ ζ|Ap1(θ)−Ap2(θ)|;
|H Ip1(θ)−H Ip2(θ)| ≤ ζ|Ip1(θ)−Ip2(θ)|;
|H Ap1(θ)−H Ap2(θ)| ≤ ζ|Ap1(θ)−Ap2(θ)|;
|H Rp1(θ)−H Rp2(θ)| ≤ ζ|Rp1(θ)−Rp2(θ)|;
|H Mp1(θ)−H Mp2(θ)| ≤ ζ|Mp1(θ)−Mp2(θ)|.

(4.5)

From Eq.(4.4) we can write,

D(H Sp1(θ),H Sp2(θ)) ≤ ζD(Sp1(θ),Sp2(θ)).

Similarly, we have

D(H Ap1(θ),H Ap2(θ)) ≤ ζD(Ap1(θ),Ap2(θ));

D(H Ip1(θ),H Ip2(θ)) ≤ ζD(Ip1(θ),Ip2(θ));

D(H Ap1(θ),H Ap2(θ)) ≤ ζD(Ap1(θ),Ap2(θ));

D(H Rp1(θ),H Rp2(θ)) ≤ ζD(Rp1(θ),Rp2(θ));

D(H Mp1(θ),H Mp2(θ)) ≤ ζD(Mp1(θ),Mp2(θ)).

Hence the system of novel Coronavirus model gratified all the assertions of
special case for standard metric space. Hence Eq. (4.3) has unique fixed
point. Thus Eq.(4.3) has a unique solution.
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4.2. Existence of solution under the setting of complete extended
b-metric space: Let
S = {A ∈ C(I,R) : A(θ) > 0 for all θ ∈ I = [0,H ],H > 0}. Define a mapping
D : S× S→ [0,∞) and p : S× S→ [1,∞) as D(u, v) = |u− v|2 and

p(u, v) =

{
|u− v|2, if u 6= v,

1, if u = v,
(4.6)

for all u, v ∈ S. Then (S,D) is a complete extended b-metric space. Define a
mapping H : S→ S by

H Sp(θ) = Sp(0) +U(σ)A(θ,Sp) + £(σ)

∫ θ

0
A(u,Sp)du;

H Ap(θ) = Ap(0) +U(σ)B(θ,Ap) + £(σ)

∫ θ

0
B(u,Ap)du;

H Ip(θ) = Ip(0) +U(σ)C(θ,Ip) + £(σ)

∫ θ

0
C(u,Ip)du;

H Ap(θ) = Ap(0) +U(σ)D(θ,Ap) + £(σ)

∫ θ

0
D(u,Ap)du;

H Rp(θ) = Rp(0) +U(σ)E(θ,Rp) + £(σ)

∫ θ

0
E(u,Rp)du;

H Mp(θ) = Mp(0) +U(σ)F(θ,Mp) + £(σ)

∫ θ

0
F(u,Mp)du,

(4.7)

where U(σ) = 2−2σ
2B(σ)−σB(σ) and £(σ) = 2σ

2B(σ)−σB(σ) . Then, we see that H is

continuous. For each u, v ∈ S and θ ∈ I, we have,

H Sp(θ) = Sp(0) +U(σ)A(θ,Sp) + £(σ)

∫ θ

0
A(u,Sp)du.

We now verify the existence and uniqueness of solutions of (4.7) provided
the following conditions satisfied:

(1) |A(θ,Sp1)− A(θ,Sp2)|2 ≤ |Sp1(θ)−Sp2(θ)|2,

(2) |U(σ) + £(σ)θ|2 < ξ, where 0 < ξ < 1.
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Now consider,

|H Sp1(θ)−H Sp2(θ)|2 = |U(σ)A(θ,Sp1) + £(σ)

∫ θ

0
A(u,Sp1)du

−U(σ)A(θ,Sp2)−£(σ)

∫ θ

0
A(u,Sp2)du|2

= |U(σ)(A(θ,Sp1)− A(θ,Sp2))

+ £(σ)[

∫ θ

0
[A(u,Sp1)− A(u,Sp2)]du]|2

= |U(σ)(A(θ,Sp1)− A(θ,Sp2))|2

+ |£(σ)[

∫ θ

0
[A(u,Sp1)− A(u,Sp2)]du]|2

+ 2|U(σ)(A(θ,Sp1)− A(θ,Sp2))|

× |£(σ)[

∫ θ

0
[A(u,Sp1)− A(u,Sp2)]du]|

= |U(σ)|2|(A(θ,Sp1)− A(θ,Sp2))|2

+ |£(σ)|2|A(u,Sp1)− A(u,Sp2)|2|
∫ θ

0
du|2

+ 2|U(σ)||A(θ,Sp1)− A(θ,Sp2)|

× |£(σ)||A(u,Sp1)− A(u,Sp2)||
∫ θ

0
du|

= |A(θ,Sp1)− A(θ,Sp2)|2

× {|U(σ)|2 + |£(σ)|2θ2 + 2U(σ)£(σ)|θ|}
= |A(θ,Sp1)− A(θ,Sp2)|2|U(σ) + £(σ)θ|2

≤ ξ|Sp1(θ)−Sp2(θ)|2.

Therefore,

|H Sp1(θ)−H Sp2(θ)| ≤ ξ|Sp1(θ)−Sp2(θ)|. (4.8)

Using the above method we discussed above, one can get

|H Ap1(θ)−H Ap2(θ)| ≤ ξ|Ap1(θ)−Ap2(θ)|;
|H Ip1(θ)−H Ip2(θ)| ≤ ξ|Ip1(θ)−Ip2(θ)|;
|H Ap1(θ)−H Ap2(θ)| ≤ ξ|Ap1(θ)−Ap2(θ)|;
|H Rp1(θ)−H Rp2(θ)| ≤ ξ|Rp1(θ)−Rp2(θ)|;
|H Mp1(θ)−H Mp2(θ)| ≤ ξ|Mp1(θ)−Mp2(θ)|.

(4.9)
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From Eq.(4.8) we can write,

D(H Sp1(θ),H Sp2(θ)) ≤ ξD(Sp1(θ),Sp2(θ)).

Similarly, we have

D(H Ap1(θ),H Ap2(θ)) ≤ ξD(Ap1(θ),Ap2(θ));

D(H Ip1(θ),H Ip2(θ)) ≤ ξD(Ip1(θ),Ip2(θ));

D(H Ap1(θ),H Ap2(θ)) ≤ ξD(Ap1(θ),Ap2(θ));

D(H Rp1(θ),H Rp2(θ)) ≤ ξD(Rp1(θ),Rp2(θ));

D(H Mp1(θ),H Mp2(θ)) ≤ ξD(Mp1(θ),Mp2(θ)).

Hence the system of novel Coronavirus model gratified all the assertions of
Theorem 2.1 in the setting of extended b-metric space. Hence Eq.(4.7) has
unique fixed point. Thus Eq.(4.7) has a unique solution.

5. Conclusion

There is still a dramatic increase for using mathematical modelling in the
study of epidemiology diseases. Mathematical models were developed to pre-
dict how infectious diseases advance to explain the potential outcome of an
outbreak, and better facilitate initiatives in global policy. We too propose a
solution for existence and uniqueness solutions of the novel Coronavirus-2019
model via fractional derivatives and nonlinear ($ − FC)-contractions.
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[24] K. Zoto, I. Vardhami, D. Bajović, Z.D. Mitrovic and S. Radenovic, On some novel
fixed point results for generalized F -contractions in b-metric-like spaces with application,
CMES-Comp. Modeling in Engg. and Sci., 135(1) (2023), 673-686.


