• Title/Summary/Keyword: nonlinear functional

Search Result 518, Processing Time 0.04 seconds

STABILITIES FOR NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Choi, Sung Kyu;Koo, Nam Jip;Song, Sse Mok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.9 no.1
    • /
    • pp.165-174
    • /
    • 1996
  • Using the comparison principle and inequalities we obtain some results on boundedness and stabilities of solutions of the nonlinear functional differential equation $y^{\prime}=f(t,y)+g(t,y,Ty)$.

  • PDF

Some Nonlinear Alternatives in Banach Algebras with Applications II

  • Dhage, B.C.
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.281-292
    • /
    • 2005
  • In this paper a nonlinear alternative of Leray-Schauder type is proved in a Banach algebra involving three operators and it is further applied to a functional nonlinear integral equation of mixed type $$x(t)=k(t,x({\mu}(t)))+[f(t,x({\theta}(t)))]\(q(t)+{\int}_0{^{\sigma}^{(t)}}v(t,s)g(s,x({\eta}\(s)))ds\)$$ for proving the existence results in Banach algebras under generalized Lipschitz and $Carath{\acute{e}}odory$ conditions.

  • PDF

AN OPTIMAL CONTROL FOR THE WAVE EQUATION WITH A LOCALIZED NONLINEAR DISSIPATION

  • Kang, Yong-Han
    • East Asian mathematical journal
    • /
    • v.22 no.2
    • /
    • pp.171-188
    • /
    • 2006
  • We consider the problem of an optimal control of the wave equation with a localized nonlinear dissipation. An optimal control is used to bring the state solutions close to a desired profile under a quadratic cost of control. We establish the existence of solutions of the underlying initial boundary value problem and of an optimal control that minimizes the cost functional. We derive an optimality system by formally differentiating the cost functional with respect to the control and evaluating the result at an optimal control.

  • PDF

ASYMPTOTIC PROPERTY FOR NONLINEAR PERTURBED FUNCTIONAL DIFFERENTIAL SYSTEMS

  • Im, Dong Man;Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • This paper shows that the solutions to nonlinear perturbed functional differential system $$y^{\prime}=f(t,y)+{\int}^t_{t_0}g(s,y(s),Ty(s))ds+h(t,y(t))$$ have the asymptotic property by imposing conditions on the perturbed part ${\int}^t_{t_0}g(s,y(s),Ty(s))ds,h(t,y(t))$ and on the fundamental matrix of the unperturbed system y' = f(t, y).

AN INVESTIGATION ON THE EXISTENCE AND UNIQUENESS ANALYSIS OF THE FRACTIONAL NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • Fawzi Muttar Ismaael
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.237-249
    • /
    • 2023
  • In this paper, by means of the Schauder fixed point theorem and Arzela-Ascoli theorem, the existence and uniqueness of solutions for a class of not instantaneous impulsive problems of nonlinear fractional functional Volterra-Fredholm integro-differential equations are investigated. An example is given to illustrate the main results.

ON A FUNCTIONAL EQUATION FOR QUADRATIC INVARIANT CURVES

  • Zhang, Weinian
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1179-1190
    • /
    • 2001
  • Quadratic invariant curve is one of the simplest nonlinear invariant curves and was considered by C. T. Ng and the author in order to study the one-dimensional nonlinear dynamics displayed by a second order delay differential equation with piecewise constant argument. In this paper a functional equation derived from the problem of invariant curves is discussed. Using a different method from what C. T. Ng and the author once used, we define solutions piecewisely and give results in the remaining difficult case left in C. T. Ng and the authors work. A problem of analytic extension given in their work is also answered negatively.

  • PDF

INSTABILITY OF SOLUTIONS FOR NONLINEAR DIFFERENTIAL EQUATIONS OF EIGHTH ORDER WITH MULTIPLE DEVIATING ARGUMENTS

  • Tunc, Cemil
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.741-748
    • /
    • 2012
  • In this work, we prove the instability of solutions for a class of nonlinear functional differential equations of the eighth order with n-deviating arguments. We employ the functional Lyapunov approach and the Krasovskii criteria to prove the main results. The obtained results extend some existing results in the literature.