• Title/Summary/Keyword: nonlinear equation of motion

Search Result 354, Processing Time 0.027 seconds

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.

Extended implicit integration process by utilizing nonlinear dynamics in finite element

  • Mohammadzadeh, Saeed;Ghassemieh, Mehdi;Park, Yeonho
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.495-504
    • /
    • 2017
  • This paper proposes a new direct numerical integration algorithm for solving equation of motion in structural dynamics problems with nonlinear stiffness. The new implicit method's degree of accuracy is higher than that of existing methods due to the higher order of the acceleration. Two parameters are defined, leading to a new family of unconditionally stable methods, which helps to take greater time steps in integration and eliminate concerns about the duration of solving. The method developed can be utilized for a number of solid plane finite elements, examples of which are given to compare the proposed method with existing ones. The results indicate the superiority of the proposed method.

Dynamical behaviour of electrically actuated microcantilevers

  • Farokhi, Hamed;Ghayesh, Mergen H.
    • Coupled systems mechanics
    • /
    • v.4 no.3
    • /
    • pp.251-262
    • /
    • 2015
  • The current paper aims at investigating the nonlinear dynamical behaviour of an electrically actuated microcantilever. The microcantilever is excited by a combination of AC and DC voltages. The nonlinear equation of motion of the microcantilever is obtained by means of force and moment balances. A high-dimensional Galerkin scheme is then applied to reduce the equation of motion to a discrete model. A numerical technique, based on the pseudo-arclength continuation method, is used to solve the discretized model. The electrostatic deflection of the microcantilever and static pull-in instabilities, due to the DC voltage, are analyzed by plotting the so-called DC voltage-deflection curves. At the simultaneous presence of the DC and AC voltages, the nonlinear dynamical behaviour of the microcantilever is analyzed by plotting frequency-response and force-response curves.

Nonlinear Analysis of Simply supported Elastic Beams under Parametric Excitation (계수려진을 받는 단순지지 보의 비선형 진동특성)

  • Son, In-Soo;Yabuno, Hiroshi;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.712-715
    • /
    • 2006
  • This paper presents the nonlinear characteristics of the parametric resonance of a simply supported beam which is inextensible beam. For the beam model, the order-three expanded equation of motion has been determined in a form amenable to a perturbation treatment. The equation of motion is derived by a special Cosserat theory. The method of multiple scales is used to determine the equations that describe to the first-order modulation of the amplitude of simply supported beam. The stability and the bifurcation points of the system are investigated applying the frequency response function.

  • PDF

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

Chaotic Out-of-Plane Vibration of Curved Pipe Conveying Oscillatory Flow (조화진동유동을 포함한 곡선파이프계의 외평면 혼돈 운동 연구)

  • 홍성철
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.849-858
    • /
    • 2000
  • In this paper the chaotic out-of-plane vibrations of the uniformly curved pipe with pulsating flow are theoretically investigated. The derived equations of motion contain the effects of nonlinear curvature and torsional coupling. The corresponding nonlinear ordinary differential equation is a type of nonhomogenous Hill's equation . this is transformed into the averaged equation by averaging theorem. Bifurcation curves of chaotic motion are obtained by Melnikov's method and plotted in several cases of frequency ratios. The theoretically obtained results are demonstrated by numerical simulation. And strange attractors are shown.

  • PDF

Dynamic Characteristics and Stability of an Infrared Search and Track (적외선 탐색 및 추적장비의 동적 특성 및 안정화)

  • Choi, Jong-Ho;Park, Yong-Chan;Lee, Joo-Hyoung;Choi, Young-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.116-124
    • /
    • 2008
  • Current paper investigates the dynamic behavior and stability of an infrared search and track subjected to external disturbance having gimbal structure with three rotating axes keeping constant angular velocity in the azimuth direction. Euler-Lagrange equation is applied to derive the coupled nonlinear dynamic equation of motion of infrared search and track and the characteristics of dynamic coupling are investigated. Two equilibrium points with small variations from the nonlinear coupling system are derived and the specific condition from which a coupled equation can be three independent equations is derived. Finally, to examine the stability of system, Lyapunov direct method was used and system stability and stability boundaries are investigated.

Hydrodynamic Forces Acting on Porpoising Craft at High-Speed

  • Katayama, Toru;Ikeda, Yoshiho
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.2
    • /
    • pp.17-26
    • /
    • 1999
  • An experimental investigation on hydrodynamic forces acting on a porpoising craft at high advanced speeds up to Froude numbers Fn=6.0(Fn=U\ulcorner:Lo\ulcorner denote overall length of ship) in calm water is performed. Captive model tests and forced motion tests are carried out to measure the hydrodynamic forces. The results show that significant nonlinear effects for motion amplitudes appear in the restoring, the added mass and the damping coefficients. The experimental results are compared with the results of a prediction method of the hydrodynamic forces include the nonlinear effects, and show a good agreement with them. A simulation using the predicted hydrodynamic forces in a nonlinear motion equation is carried out to obtain the porpoising motion of a craft in calm water. The calculated results are in fairly good agreement with experimental ones.

  • PDF

Erection Simulation Considering Interaction between a Floating Crane and a Heavy Cargo (해상크레인과 대형 중량물의 상호 작용을 고려한 탑재 시뮬레이션)

  • Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.1
    • /
    • pp.70-83
    • /
    • 2010
  • Recently, floating cranes are mainly used to erect heavy blocks or cargos for constructing ships in many shipyards. It is important to estimate the dynamic motion of the heavy cargo suspended by a floating crane and the tension of the wire ropes between the floating crane and the heavy cargo. In this paper, the coupled dynamic equations of motion are set up for considering the 6 degree-of-freedom floating crane and the 6-degrees-of-freedom heavy cargo based on multibody system dynamics. Depending on the cargo weight, the motion of the floating crane would be changed to nonlinear state. The nonlinear terms in the equation of motion are considered. In addition, the nonlinear hydrostatic force, the linear hydrodynamic force, wire rope force, mooring force and gravity force are considered as the external forces. As the result of this paper, we analyze the engineering effect for erecting the heavy cargo by using the floating crane.

Dynamic Characteristics of Linear Motion Guide Supported by Rolling Ball Bearings (볼 베어링을 이용 Linear Motion Guide의 동적 특성에 관한 연구)

  • 최재석;이용섭;김윤영;이동진;이성진;유정훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.326-331
    • /
    • 2004
  • The linear motion (LM) guide using ball bearing has many advantages compared with conventional sliding guides. Therefore, LM guide using ball bearing has been used widely to increase the accuracy of the position of a system. This research investigates dynamic characteristics of LM guide through mainly linear analysis. Linear analysis is accomplished by Lagrange equation and finite element method. And another trial that is nonlinear analysis about one mode of LM guide(bouncing mode) from Hertzian contact theory is accomplished in the latter half of this research. Through nonlinear analysis we could observe the softening characteristic due to the Hertzian contact nonlinearity.

  • PDF