• Title/Summary/Keyword: nonlinear energy transfer

Search Result 78, Processing Time 0.03 seconds

Parametric Study of Selective Laser Melting Using Ti-6Al-4V Powder Bed for Concurrent Control of Volumetric Density and Surface Roughness (LPBF 공정으로 제조된 Ti-6Al-4V 합금의 밀도와 표면 거칠기 제어를 위한 매개변수 연구)

  • Woo, Jeongmin;Kim, Ji-Yoon;Sohn, Yongho;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.410-416
    • /
    • 2021
  • Ti-6Al-4V alloy has a wide range of applications, ranging from turbine blades that require smooth surfaces for aerodynamic purposes to biomedical implants, where a certain surface roughness promotes biomedical compatibility. Therefore, it would be advantageous if the high volumetric density is maintained while controlling the surface roughness during the LPBF of Ti-6Al-4V. In this study, the volumetric energy density is varied by independently changing the laser power and scan speed to document the changes in the relative sample density and surface roughness. The results where the energy density is similar but the process parameters are different are compared. For comparable energy density but higher laser power and scan speed, the relative density remained similar at approximately 99%. However, the surface roughness varies, and the maximum increase rate is approximately 172%. To investigate the cause of the increased surface roughness, a nonlinear finite element heat transfer analysis is performed to compare the maximum temperature, cooling rate, and lifetime of the melt pool with different process parameters.

Damage analysis of three-leg jacket platform due to ship collision

  • Jeremy Gunawan;Jessica Rikanti Tawekal;Ricky Lukman Tawekal;Eko Charnius Ilman
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.385-399
    • /
    • 2023
  • A collision between a ship and an offshore platform may result in structural damage and closure; therefore, damage analysis is required to ensure the platform's integrity. This paper presents a damage assessment of a three-legged jacket platform subjected to ship collisions using the industrial finite element program Bentley SACS. This study considers two ships with displacements of 2,000 and 5,000 tons and forward speeds of 2 and 6.17 meters per second. Ship collision loads are applied as a simplified point load on the center of the platform's legs at inclinations of 1/7 and 1/8; diagonal bracing is also included. The jacket platform is modelled as beam elements, with the exception of the impacted jacket members, which are modelled as nonlinear shell elements with elasto-plastic material and constant isotropic hardening to provide realistic dented behavior due to ship collision load. The structural response is investigated, including kinetic energy transfer, stress distribution, and denting damage. The simulation results revealed that the difference in leg inclination has no effect on the level of localized denting damage. However, it was discovered that a leg with a greater inclination (1/8) resists structural displacement more effectively and absorbs less kinetic energy. In this instance, the three-legged platform collapses due to the absorption of 27.30 MJ of energy. These results provide crucial insights for enhancing offshore platform resilience and safety in high-traffic maritime regions, with implications for design and collision mitigation strategies.

Small Signal Modeling Analysis and Experimental Verification of LLC Resonant Converter (LLC 공진형 컨버터의 소신호 모델링 분석 및 실험적 검증)

  • Kim, Jinwoo;Lee, Taeyoung;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.365-366
    • /
    • 2017
  • LLC resonant DC-DC converter is widely used in many kinds of applications such as battery energy storage systems, wireless power transfer and high voltage power supply. It is because of characteristics like high efficiency, power density, isolation, wide power level and stability enhancement at high switching frequency. Small signal modeling helps to design controller of the converter by approximating the behavior of nonlinear system with linear state equations. This paper presents comparison between small signal modeling analysis and experimental results of LLC resonant converter.

  • PDF

Analysis on the thermal development of radiatively participating pipe flow with nonaxisymmetric convective heat loss (비축대칭 대류열손실 경계조건하에서 원관내 복사에 관여하는 매질의 층류 열적 발달의 수치해석)

  • ;;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2995-3002
    • /
    • 1995
  • The cooling problem of the hot internal pipe flow has been investigated. Simultaneous conduction, convection, and radiation were considered with azimuthally varying convective heat loss at the pipe wall. A complex, nonlinear integro-differential radiative transfer equation was solved by the discrete ordinates method (or called S$_{N}$ method). The energy equation was solved by control volume based finite difference technique. A parametric study was performed by varying the conduction-to-radiation parameter, optical thickness, and scattering albedo. The results have shown that initially the radiatively active medium could be more efficiently cooled down compared with the cases otherwise. But even for the case with dominant radiation, as the medium temperature was lowered, the contribution of conduction became to exceed that of radiation.n.

Deformation of the PDMS Membrane for a Liquid Lens Under Hydraulic Pressure

  • Gu, Haipeng;Gan, Zihao;Hong, Huajie;He, Keyan
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.391-401
    • /
    • 2021
  • In the present study, a hyperelastic constitutive model is built by complying with a simplified hyperelastic strain energy function, which yields the numerical solution for a deformed polydimethylsiloxane (PDMS) membrane in the case of axisymmetric hydraulic pressure. Moreover, a nonlinear equilibrium model is deduced to accurately express the deformation of the membrane, laying a basis for precise analysis of the optical transfer function. Comparison to experimental and simulated data suggests that the model is capable of accurately characterizing the deformation behavior of the membrane. Furthermore, the stretch ratio derived from the model applies to the geometrical optimization of the deformed membrane.

Performance Analysis of Heat Sink for LED Downlight Using Lumped Parameter Model (집중변수모델을 이용한 LED조명등 방열기구의 성능분석)

  • Kim, Euikwang;Jo, Youngchul;Yi, Seungshin;An, Younghoon
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.64-72
    • /
    • 2017
  • The performance analysis of the 70 W class LED lighting system suitable for the Middle East environment was performed using the lumped parameter model. The LED light is composed of a heating substrate, a heat pipe, and a heat sink. We divided the LED lights into four objects and applied energy equilibrium to each of them to establish four lumped nonlinear differential equations. The solution of the simultaneous equations was obtained by the Runge-Kutta method. Convective heat transfer coefficients of the lumped model were obtained by multidimensional CFD analysis. As a result of comparison with experiment, it was found that the heating substrate had an error of $1.5^{\circ}C$ and the upper heat sink had an error of $1.8^{\circ}C$ and the relative error was about 0.6 %. Using this model, temperature distribution analysis was performed for normal operating conditions with an ambient temperature of $55^{\circ}C$, with sunlight only, with abnormal operating conditions with sunlight, and without an upper heat sink.

Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile

  • Hoque, Md. Ehtesham Ul;Dey, Shuchismita;Kim, Chan-Kyung;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1138-1142
    • /
    • 2011
  • Kinetic studies for the reactions of Y-aryl phenyl chlorothiophosphates with X-pyridines have been carried out in acetonitrile at $35.0^{\circ}C$. The Hammett and Bronsted plots for substituent X variations in the nucleophiles are biphasic concave upwards with a break point at X = 3-Ph, while the Hammett plots for substituent Y variations in the substrates are biphasic concave downwards (and partially upwards) with a break point at Y = H. The signs and magnitudes of the cross-interaction constant (${\rho}_{XY}$) are strongly dependent upon the nature of substituents, X and Y. The proposed mechanism is a stepwise process with a rate-limiting step change from bond breaking with the weaker electrophiles to bond formation with the stronger eletrophiles. The nonlinear free energy correlations of biphasic concave upward plots for substituent X variations in the nucleophiles are rationalized by a change in the attacking direction of the nucleophile from a backside with less basic pyridines to a frontside attack with more basic pyridines.

Numerical investigation on combined wave damping effect of pneumatic breakwater and submerged breakwater

  • Wang, Yanxu;Yin, Zegao;Liu, Yong;Yu, Ning;Zou, Wei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.314-328
    • /
    • 2019
  • This paper attempts to combine the pneumatic breakwater and submerged breakwater to increase the effectiveness of wave damping for long-period waves. A series of physical experiments concerning pneumatic breakwater, submerged breakwater and their joint breakwater was conducted and used to validate a mathematical model based on Reynolds-averaged Navier-Stokes equations, the RNG $k-{\varepsilon}$ turbulence model and the VOF method. In addition, the mathematical model was used to investigate the wave transmission coefficients of three breakwaters. The nonlinear wave propagation behaviors and the energy transfer from lower frequencies to higher frequencies after the submerged breakwater were investigated in detail. Furthermore, an optimal arrangement between pneumatic breakwater and submerged breakwater was obtained for damping longer-period waves that cannot be damped effectively by the pneumatic breakwater alone. In addition, the reason for the appearance of the combination effect is that part of the energy of the transmitted waves over the submerged breakwater transfers to shorter-period waves. Finally, the impact of the joint breakwater on the wave field during wave propagation process was investigated.

Evaluation of high power ultrasonic energy transmission characteristics of a liquid matching layer by using sonoluminescence (소노루미네센스를 이용한 액체정합층의 고출력 초음파에너지 전달특성 평가)

  • Kim, Jungsoon;Kim, Haeun;Son, Jinyoung;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.408-416
    • /
    • 2021
  • In the ultrasonic dispersion, in order to avoid direct contact of the radiation surface of ultrasonic transducers with a liquid sample, the liquid sample is separated by a glass container and it receives ultrasonic energy through an acoustic medium. The transmission efficiency of the ultrasonic energy in the multi-layered ultrasonic system is an important factor. In this study, we suggested a method that can improve the ultrasonic energy transfer efficiency by using a propylene glycol solution as a liquid matching layer in the multi-layered acoustic system. In this method, a propylene glycol solution was filled between the Langevin-type ultrasonic transducer and the luminol solution and the sonoluminescence phenomena in the luminol solution, which is caused by nonlinear effect of high power ultrasound radiated from the transducer, was examined by using a Photo Multiplier Tube (PMT). The transmission efficiency depending on the concentration of propylene glycol solution was observed, and we can see that as the concentration of the propylene glycol solution increased, the matching effect increased while the acoustic attenuation increased. It was confirmed that there is an optimal concentration compromised these two conflicting conditions, and the optimum concentration of the propylene glycol solution was determined experimentally.

On-line Temperature Monitoring of the GIS Contacts Based on Infrared Sensing Technology

  • Li, Qingmin;Cong, Haoxi;Xing, Jinyuan;Qi, Bo;Li, Chengrong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1385-1393
    • /
    • 2014
  • Gas insulated switchgear (GIS) is widely used in the power systems, however, the contacts overheating of the inside circuit breaker or disconnector may be a potential cause of developing accidents. As the temperature of the contacts cannot be directly acquired due to existence of the metallic shield, an infrared sensor is adopted to directly measure the temperature of the shield and then the contacts temperature can be indirectly obtained by data fitting, based on which the on-line temperature monitoring technology specifically for GIS contacts based on infrared sensing is proposed in this paper. A real GIS test platform is constructed and experimental studies are carried out to account for the influential factors that affect the accuracy of the infrared temperature measurement. A heat transfer model of the GIS module is also developed, together with experimental studies, the nonlinear temperature relationship among the contacts, the metallic shield and the environment based on a neural network algorithm is established. Finally, an integrated on-line temperature monitoring system for the GIS contacts is developed for on-site applications.