Acknowledgement
We wish to extend deep gratitude to Professor Hai-Tang Yang of Central South University, who offered experimental equipment and technical support.
References
- H. Ren and S. T. Wu, Introduction to Adaptive Lenses (John Wiley & Sons, NJ, USA. 2012).
- B. Berge, "Electrocapillarity and wetting of insulator films by water," C. R. Acad. Sci. 317, 157-163 (1993).
- A. M. Watson, K. Dease, S. Terrab, C. Roath, J. T. Gopinath, and V. M. Bright, "Focus-tunable low-power electrowetting lenses with thin parylene films," Appl. Opt. 54, 6224-6229 (2015). https://doi.org/10.1364/AO.54.006224
- S. Xu, H. Ren, and S.-T. Wu, "Dielectrophoretically tunable optofluidic devices," J. Phys. D: Appl. Phys. 46, 483001 (2013). https://doi.org/10.1088/0022-3727/46/48/483001
- Z. Zeng, R. Peng, and M. He, "Effect of oil liquid viscosity on hysteresis in double-liquid variable-focus lens based on electrowetting," Proc. SPIE 10250, 1025012 (2017).
- L. Li, C. Liu, H. Ren, and Q.-H. Wang, "Optical switchable electrowetting lens," IEEE Photon. Technol. Lett. 28, 1505-1508 (2016). https://doi.org/10.1109/LPT.2016.2555991
- B. Jin, H. Ren, and W.-K. Choi, "Dielectric liquid lens with chevron-patterned electrode," Opt. Express 25, 32411-32419 (2017). https://doi.org/10.1364/OE.25.032411
- J.-H. Wang, X. Zhou, L. Luo, R.-Y. Yuan, and Q.-H. Wang, "Tunable liquid lens integrated with aspheric surface," Opt. Commun. 445, 56-63 (2019). https://doi.org/10.1016/j.optcom.2019.03.066
- Y.-L. Sung, J. Garan, Z. Hu, X. Shan, and W.-C. Shih, "Modeling the surface of fast-cured polymer droplet lenses for precision fabrication," Appl. Opt. 57, 10342-10347 (2018). https://doi.org/10.1364/AO.57.010342
- G. Bonfante, S. Chevalliot, B. Toury, B. Berge, and M. Maillard, "Two-liquid wetting properties as a surface polarity probe for hydrophobic coatings," Phys. Chem. Chem. Phys. 19, 3214-3218 (2017). https://doi.org/10.1039/C6CP07392A
- S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004). https://doi.org/10.1063/1.1779954
- N. Sugiura and S. Morita, "Variable-focus liquid-filled optical lens," Appl. Opt. 32, 4181-4186 (1993). https://doi.org/10.1364/AO.32.004181
- T. Kern, "Variable focus lens having two liquid chambers," U.s. Patent 8947784B2 (2015).
- H. Ren and S.-T. Wu, "Variable-focus liquid lens by changing aperture," Appl. Phys. Lett. 86, 211107 (2005). https://doi.org/10.1063/1.1935749
- H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, "Tunable-focus liquid lens controlled using a servo motor," Opt. Express 14, 8031-8036 (2006). https://doi.org/10.1364/OE.14.008031
- H. Ren and S.-T. Wu, "Variable-focus liquid lens," Opt. Express 15, 5931-5936 (2007). https://doi.org/10.1364/OE.15.005931
- R. Patra, S. Agarwal, S. Kondaraju, and S. S. Bahga, "Membrane-less variable focus liquid lens with manual actuation," Opt. Commun. 389, 74-78 (2017). https://doi.org/10.1016/j.optcom.2016.12.021
- L. Li, Q.-H. Wang, and W. Jiang, "Liquid lens with double tunable surfaces for large power tunability and improved optical performance," J. Opt. 13, 115503 (2011). https://doi.org/10.1088/2040-8978/13/11/115503
- B. Jin, J.-H. Lee, Z. Zhou, G. Zhang, G.-B. Lee, H. Ren, and C. Nah, "Adaptive liquid lens driven by elastomer actuator," Opt. Eng. 55, 017107 (2016). https://doi.org/10.1117/1.OE.55.1.017107
- H. Ren and S.-T. Wu, "Adaptive lenses based on soft electroactive materials," Appl. Sci. 8, 1085 (2018). https://doi.org/10.3390/app8071085
- W. Jia, D. Xiang, and S. Li, "A liquid progressive multifocal lens adjusted by the deformation of a non-uniform elastic membrane due to the variation of liquid pressure," J. Eur. Opt. Soc. 14, 17 (2018). https://doi.org/10.1186/s41476-018-0087-7
- A. Majumder, C. Ghosh, M. U. Karkhanis, A. Banerjee, R. Likhite, C. H. Mastrangelo, and T. Ghosh, "Creep deformation in elastomeric membranes of liquid-filled tunable-focus lenses," Appl. Opt. 58, 6446-6454 (2019). https://doi.org/10.1364/AO.58.006446
- S. T. Choi, B. S. Son, G. W. Seo, S.-Y. Park, and K.-S. Lee, "Optomechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses," Opt. Express 22, 6133-6146 (2014). https://doi.org/10.1364/OE.22.006133
- P. Pokorny, F. Smejkal, P. Kulmon, P. Novak, J. Novak, A. Miks, M. Horak, and M. Jirasek, "Calculation of nonlinearly deformed membrane shape of liquid lens caused by uniform pressure," Appl. Opt. 56, 5939-5947 (2017). https://doi.org/10.1364/AO.56.005939
- A. E. H. Love A treatise on the mathematical theory of elasticity, 4th ed., (Cambridge university press, Cambridge, UK, 2013).
- S. Timoshenko and S. Woinowsky-Krieger, Theory of plates and shells, 2nd ed., (McGraw-hill, NY, USA. 1959).
- A. B. Basset, "On the deformation of thin elastic plates and shells," Am. J. Math. 16, 254-290 (1894). https://doi.org/10.2307/2369634
- R. S. Rivlin, "Large elastic deformations of isotropic materials. I. fundamental concepts," Philos. Trans. R. Soc. A 240, 459-490 (1948). https://doi.org/10.1098/rsta.1948.0002
- R. S. Rivlin and D. W. Saunders, "Large elastic deformations of isotropic materials VII. experiments on the deformation of rubber," Philos. Trans. R. Soc. A 243, 251-288 (1951). https://doi.org/10.1098/rsta.1951.0004
- R. W. Ogden, Non-linear elastic deformations (Dover Publications, NY, USA. 1997).
- M. Reiner and D. Abir, Second-order Effects in Elasticity, Plasticity and Fluid Dynamics: International Symposium, Haifa (Pergamon Press / The Macmillan Company, UK. 1964).
- M. M. Carroll, "Must elastic materials be hyperelastic?," Math. Mech. Solids 14, 369-376 (2009). https://doi.org/10.1177/1081286508099385
- Y.-S. Yu and Y.-P. Zhao, "Deformation of PDMS membrane and microcantilever by a water droplet: comparison between Mooney-Rivlin and linear elastic constitutive models," J. Colloid Interface Sci. 332, 467-476 (2009). https://doi.org/10.1016/j.jcis.2008.12.054
- O. H. Yeoh, "Some forms of the strain energy function for rubber," Rubber Chem. Technol. 66, 754-771 (1993). https://doi.org/10.5254/1.3538343