DOI QR코드

DOI QR Code

Parametric Study of Selective Laser Melting Using Ti-6Al-4V Powder Bed for Concurrent Control of Volumetric Density and Surface Roughness

LPBF 공정으로 제조된 Ti-6Al-4V 합금의 밀도와 표면 거칠기 제어를 위한 매개변수 연구

  • Woo, Jeongmin (Department of Materials Science and Engineering, University of Central Florida) ;
  • Kim, Ji-Yoon (Department of Materials Science and Engineering, University of Central Florida) ;
  • Sohn, Yongho (Department of Materials Science and Engineering, University of Central Florida) ;
  • Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
  • Received : 2021.09.15
  • Accepted : 2021.10.12
  • Published : 2021.10.28

Abstract

Ti-6Al-4V alloy has a wide range of applications, ranging from turbine blades that require smooth surfaces for aerodynamic purposes to biomedical implants, where a certain surface roughness promotes biomedical compatibility. Therefore, it would be advantageous if the high volumetric density is maintained while controlling the surface roughness during the LPBF of Ti-6Al-4V. In this study, the volumetric energy density is varied by independently changing the laser power and scan speed to document the changes in the relative sample density and surface roughness. The results where the energy density is similar but the process parameters are different are compared. For comparable energy density but higher laser power and scan speed, the relative density remained similar at approximately 99%. However, the surface roughness varies, and the maximum increase rate is approximately 172%. To investigate the cause of the increased surface roughness, a nonlinear finite element heat transfer analysis is performed to compare the maximum temperature, cooling rate, and lifetime of the melt pool with different process parameters.

Keywords

Acknowledgement

본 연구는 산업통상자원부 및 한국산업기술진흥원의 혁신성장 글로벌 인재 양성 사업(P0008750)의 지원으로 수행되었으며 이에 감사드립니다.

References

  1. H. Kodama: Rev. Sci. Instrum., 52 (1981) 1770. https://doi.org/10.1063/1.1136492
  2. ISO/ASTM 52900: (2015).
  3. F. Abe, K. Osakada, M. Shiomi, K. Uematsu and M. Matsumoto: J. Mater. Process. Technol., 111 (2001) 210. https://doi.org/10.1016/S0924-0136(01)00522-2
  4. C. Qiu, N. J. E. Adkins and M. M. Attallah: Mater. Sci. Eng., A, 578 (2013) 230. https://doi.org/10.1016/j.msea.2013.04.099
  5. T. Vilaro, C. Colin and J. D. Bartout: Metall. Mater. Trans. A, 42 (2011) 3190. https://doi.org/10.1007/s11661-011-0731-y
  6. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia and M. Qian: Acta Mater., 85 (2015) 74. https://doi.org/10.1016/j.actamat.2014.11.028
  7. M. Qian, W. Xu, M. Brandt and H. P. Tang: MRS Bull., 41 (2016) 775. https://doi.org/10.1557/mrs.2016.215
  8. A. M. Khorasani, I. Gibson, A. Ghaderi and M. I. Mohammed: Int. J. Adv. Manuf. Technol., 101 (2018) 3183. https://doi.org/10.1007/s00170-018-3162-8
  9. B. Vrancken, L. Thijs, J.-P. Kruth and J. V. Humbeeck: J. Alloys Compd., 541 (2012) 177. https://doi.org/10.1016/j.jallcom.2012.07.022
  10. K. S. Chan, M. Koike, R. L. Mason and T. Okabe: Metall. Mater. Trans. A, 44 (2013) 1010. https://doi.org/10.1007/s11661-012-1470-4
  11. S. Yue, R. M. Pillar and G. C. Weatherly: J. Biomed. Mater. Res., 18 (1984) 1043. https://doi.org/10.1002/jbm.820180908
  12. P. Edwards and M. Ramulu: Mater. Sci. Eng., A, 598 (2014) 327. https://doi.org/10.1016/j.msea.2014.01.041
  13. M. Nakatani, H. Masuo, Y. Tanaka and Y. Murakami: Procedia Struct. Integrity, 19 (2019) 294. https://doi.org/10.1016/j.prostr.2019.12.032
  14. D. Greitemeier, C. D. Donne, F. Syassen, J. Eufinger and T. Melz: Mater. Sci. Technol., 32 (2016) 629. https://doi.org/10.1179/1743284715y.0000000053
  15. M. Boivineau, C. Cagran, D. Doytier, V. Eyraud, M.-H. Nadal, B. Wilthan and G. Pottlacher: Int. J. Thermophys., 27 (2006) 507. https://doi.org/10.1007/PL00021868
  16. A. M. Khorasani, I. Gibson and A. R. Ghaderi: Int. J. Adv. Manuf. Technol., 97 (2018) 3761. https://doi.org/10.1007/s00170-018-2168-6
  17. C. Limmaneevichitr and S. Kou: Welding J., 79 (2000) 231.
  18. J. M. Drezet, S. Pellerin, C. Bezencon and S. Mokadem: J. Phys. IV, 120 (2004) 299.